• Title/Summary/Keyword: Die Fracture

Search Result 201, Processing Time 0.02 seconds

A study on the Bending Fatigue Strength of Die Steels coated with VC(Vanadium Carbide)by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC coating 금형강의 굽힘 피로강도에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.166-177
    • /
    • 1993
  • Bending fatigue strength tests were made for VC coated die steels which were coated by immersing in a molten borax bath and for hardened die steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$ and $1025^{\circ}C$. The material used in this investigation was a representative cold and hot die steels STD11, STD61. The results obtained are as follows. 1) The endurance limit of VC coated die steels was a little lower than that of hardened die steels. It is considered to be mainly due to the decfl.lase of hardness in the substrates. Accordingly, the endurance limit reo covered almost to the level of hardened die steels by an additional diffusion treatment. 2) The initiation point of fatigue fracture of VC coated die steels in reversed bening was on the substrate just under the VC layer. Hence, the endurance limit is corrected to the hardness of this part. 3) But, there is a considerable scatter in this relationship and the endurance limit of VC coated die steels was a little lower than that of hardened die steels with equal hardness. These results suggest that the fatigue strength of VC coated die steels is determined not only by the hardness but also by other factors. For example. the residual stress in the substrate just under VC coating layer is one of the factors besides hardness which is mainly related to the retained austenite(${\gamma}_R$).

  • PDF

FRACTURE STRENGTH OF THE IPS EMPRESS CROWN:THE EFFECT OF OCCLUSAL DEPTH AND AXIAL INCLINATION ON UPPER FIRST PREMOLAR CROWNS (IPS Empress 도재관의 파절강도 : 상악제1소구치에서 교합면 두께와 축면 경사도에 따른 영향)

  • Dong, Jin-Keun;Oh, Sang-Chun;Kim, Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.127-133
    • /
    • 1999
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the occlusal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ},\;8^{\circ},\;12^{\circ}$) of the upper first premolar. After 10 metal dies were made fir each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results were : 1. The fracture strength of the ceramic crown with 2.5mm depth and $12^{\circ}$ inclination was the highest (630N). Crowns of 1.5mm depth and $4^{\circ}$ inclination had the lowest strength(378N). There were no significant differences of the fracture strength by axial inclination in same occlusal depth group. 2. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin, irrespective of occlusal depth.

  • PDF

Evaluation of Fracture Strength of Silicon Wafer for Semiconductor Substrate by Point Load Test Method (점하중시험법에 의한 반도체 기판용 실리콘 웨이퍼의 파괴강도 평가)

  • Lee, Seung-Mi;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the effect of grinding process and thickness on the fracture strength of silicon die used for semiconductor substrate. Method: Silicon wafers with different thickness from $200{\mu}m$ to $50{\mu}m$ were prepared by chemical mechanical polishing (CMP) and dicing before grinding (DBG) process, respectively. Fracture load was measured by point load test for 50 silicon dies per each wafer. Results: Fracture strength at the center area was lower than that at the edge area of the wafer fabricated by DBG process, while random distribution of the fracture strength was observed for the CMPed wafer. Average fracture strength of DBGed specimens was higher than that of the CMPed ones for the same thickness of wafer. Conclusion: DBG process can be more helpful for lowering fracture probability during the semiconductor fabrication process than CMP process.

The Effect of Reliability Test on Failure mode for Flip-Chip BGA C4 bump (FC-BGA C4 bump의 신뢰성 평가에 따른 파괴모드 연구)

  • Huh, Seok-Hwan;Kim, Kang-Dong;Jang, Jung-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.45-52
    • /
    • 2011
  • It is known that test methods to evaluate solder joint reliability are die shock test, die shear test, 3points bending test, and thermal shock test. The present study investigated the effects of failure mode on 3 types (as-reflowed, $85^{\circ}C$/85%RH treatment, and $150^{\circ}C$/10hr aging) of solder joints for flip-chip BGA package by using various test methods. The test methods and configurations are reported in detail, i.e. die shock, die shear, 3points bending, and thermal shock test. We focus on the failure mode of solder joints under various tests. The test results indicate that die shock and die shear test method can reveal brittle fracture in flip-chip ball grid array (FCBGA) packages with higher sensitivity.

Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process (냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가)

  • Ryu, S.H.;Jung, S.H.;Jeong, H.Y.;Kim, K.I.;Cho, G.S.;Noh, W.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

The Effect of Porthole Shape on Elastic Deformation of Die and Process at Condenser Tube Extrusion (포트홀 형상이 컨덴서 튜브 직접 압출 공정 및 금형 탄성 변형에 미치는 영향)

  • Lee, J.M.;Kim, B.M.;Jo, H.;Jo, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • Recently, condenser tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce condenser tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

  • PDF

A Study on the Prediection of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • 안수홍;김태형;김병민;최재찬;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • In this paper, the fatigue behaviour of typical axisymmetric forward extrusion die is investigated and extrusion process is analyzed by the rigid-plastic finite element method and elasto-plastic finite element method. To approach the crack problem involving crack initiation and propagation in extrusion die, LEFM(Linear Elastic Fracture Mechanics) is introduced and singular element which models stress.strain singularity in the crack tip vincity has been used to obtain an accurate stress intensityu factor values and other results. Form the displacement around the crack tip the stress intensity factor and the effective stress intensity factor at the beginning of the die inlet radius has been calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law to this data the angle and direction of fatigue crack growth has been simulated and these are compared with some experimental results. Using the computed crack growth rate, fatigue life of the extrusion die has been evaluated.

  • PDF

Ductile Fracture in Axisymmetric Extrusion Process (축대칭 전방 압출 공정에서의 연성파괴)

  • 최석우;이용신;오흥국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.29-37
    • /
    • 1996
  • A ductile fracture criterion, which has already proposed, namely, ($\Delta$1/1o)f at $\Delta$$\sigma$ m=(($\Delta$1/1o)f+(-1/tan$\theta$)$\Delta$$\sigma$m(where ($\Delta$1/1o)f is fracture elongation, $\Delta$$\sigma$m is mean stress variation) was made use of to study the working limit in axisymmetric extrusion. The present investigation is concerned with the application of theory on flow and fracture to the prediction of workability of materials in axisymmetric bar extrusion, with special reference to central bursting. The influenced of die geometry and manufacturing conditions on the central bursting are predicted.

  • PDF

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology (강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF