• Title/Summary/Keyword: Die Angle

Search Result 287, Processing Time 0.03 seconds

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

A study on measurement and compensation of automobile door gap using optical triangulation algorithm (광 삼각법 측정 알고리즘을 이용한 자동차 도어 간격 측정 및 보정에 관한 연구)

  • Kang, Dong-Sung;Lee, Jeong-woo;Ko, Kang-Ho;Kim, Tae-Min;Park, Kyu-Bag;Park, Jung Rae;Kim, Ji-Hun;Choi, Doo-Sun;Lim, Dong-Wook
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • In general, auto parts production assembly line is assembled and produced by automatic mounting by an automated robot. In such a production site, quality problems such as misalignment of parts (doors, trunks, roofs, etc.) to be assembled with the vehicle body or collision between assembly robots and components are often caused. In order to solve such a problem, the quality of parts is manually inspected by using mechanical jig devices outside the automated production line. Automotive inspection technology is the most commonly used field of vision, which includes surface inspection such as mounting hole spacing and defect detection, body panel dents and bends. It is used for guiding, providing location information to the robot controller to adjust the robot's path to improve process productivity and manufacturing flexibility. The most difficult weighing and measuring technology is to calibrate the surface analysis and position and characteristics between parts by storing images of the part to be measured that enters the camera's field of view mounted on the side or top of the part. The problem of the machine vision device applied to the automobile production line is that the lighting conditions inside the factory are severely changed due to various weather changes such as morning-evening, rainy days and sunny days through the exterior window of the assembly production plant. In addition, since the material of the vehicle body parts is a steel sheet, the reflection of light is very severe, which causes a problem in that the quality of the captured image is greatly changed even with a small light change. In this study, the distance between the car body and the door part and the door are acquired by the measuring device combining the laser slit light source and the LED pattern light source. The result is transferred to the joint robot for assembling parts at the optimum position between parts, and the assembly is done at the optimal position by changing the angle and step.

Analysis of Shaping Parameters Influencing on Dimensional Accuracy in Single Point Incremental Sheet Metal Forming (음각 점진성형에서 치수정밀도에 영향을 미치는 형상 파라미터 분석)

  • Kang, Jae Gwan;Kang, Han Soo;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.90-96
    • /
    • 2016
  • Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Compared to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized parts. ISF needs die-less machine alone, while conventional sheet forming requires highly expensive facilities like dies, molds, and presses. This equipment takes long time to get preparation for manufacturing. However, ISF does not need the full facilities nor much cost and time. Because of the facts, ISF is continuously being used for small batch or prototyping manufacturing in current industries. However, spring-back induced in the process of incremental forming becomes a critical drawback on precision manufacturing. Since sheet metal, being a raw material for ISF, has property to resilience, spring-back would come in the case. It is the research objective to investigate how geometrical shaping parameters make effect on shape dimensional errors. In order to analyze the spring-back occurred in the process, this study experimented on Al 1015 material in the ISF. The statistical tool employed experimental design with factors. The table of orthogonal arrays of $L_8(2^7)$ are used to design the experiments and ANOVA method are employed to statistically analyze the collected data. The results of the analysis from this study shows that the type of shape and the slope of bottom are the significant, whereas the shape size, the shape height, and the side angle are not significant factors on dimensional errors. More error incurred on the pyramid than on the circular type in the experiments. The sloped bottom showed higher errors than the flat one.

Prediction of Impact Energy Absorption in a High Weight Drop Tester by Response Surface Methodology (반응표면법을 사용한 고 중량물 낙하시험기의 충격에너지 흡수량 예측 연구)

  • Kang, Hoon;Jang, Jin-Seok;Kim, Da-Hye;Kang, Ji-Heon;Yoo, Wan-Seok;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.44-51
    • /
    • 2016
  • This paper presents the characteristics of the energy absorption in an expansion tube type impact absorber that is applied to a high weight drop tester and the use of a response surface methodology to predict the impact energy absorption. In order to identify the characteristics of the energy absorption, a set of finite element analysis was conducted with Abaqus Explicit. Moreover, the ISCD-II sampling method and a first order polynomial were used to build a response surface. As a result, we demonstrated that the impact energy could be controlled by four main design variables, namely an expansion pipe's thickness, inner radius, pressing die's expansion angle and expansion ratio. Additionally, we observed the relationship between the four main design variables and the impact energy absorbing time, displacement, and maximum impact force.

A Study for Progressive Working of Electronic Products by the using 3-D Shape Recognition Method (3차원 형상인식 기법을 이용한 전기제품의 프로그레시브 가공에 관한 연구)

  • Kim, Y. M.;Kim, J. H.;Song, S. W.;Kim, C.;Choi, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.591-594
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout and die layout module. Based on knowledge-based rules, the system is designed by considering several factors such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing generated by the piercing processes with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer for progressive working of electronic products to be more efficient in this field.

  • PDF

A STUDY ON FRACTURE STRENGTH OF CONVENTIONAL AND COPY-MILLED IN-CERAM CROWNS (Copy-milled Celay In-Ceram 전부도재관의 파절강도에 관한 연구)

  • Hwang, Jung-Won;Yang, Jae-Ho;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.417-430
    • /
    • 1997
  • The purpose of this study was to compare the fracture resistance of copy-milled and conventional In-Ceram crown. Four groups of ten uniform sized all-ceramic crowns were fabricated. In-Ceram Spinell and In-Ceram Alumina crowns were fabricated as control group, Celay In-Ceram Spinell and Celay In-Ceram Alumina crowns were fabricated as test group. All specimen were cemented on stainless steel master die with resin cement, and stored in $37^{\circ}C$ water for 1 day prior to loading in Instron testing machine. Using a steel ball at a crosshead surfed of 0.5mm/min, the crowns were loaded at $30^{\circ}C$ angle until catastrophic failure occurred. The results obtained were as follows : 1. With the value of $984.8N{\pm}103.67N$, the strength of Celay In-Ceram Alumina crowns had a significantly higher fracture strength than conventional In-Ceram Alumina crowns ($876.2N{\pm}92.20N$) (P<0.05) 2. The fracture strength of Celay In-Ceram Spinell crowns($706.3{\pm}70.59N$) was greater than that of conventional In-Ceram Spinell crowns($687.4{\pm}90.26N$), but there was no significant difference(P>0.05). 3. The In-Ceram Alumina crowns had a significantly higher fracture strength than In-Ceram Spinell crowns in both methods(P<0.05). 4. Ther order of fracture strength was as followed : Celay In-Ceram Alumina, In-Ceram Alumina, Celay In-Ceram Spinell and In-Ceram Spinell crowns

  • PDF

Comparison of the fit accuracy of zirconia-based prostheses generated by two CAD/CAM systems

  • Ha, Seok-Joon;Cho, Jin-Hyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • PURPOSE. The purposes of this study are to evaluate the internal and marginal adaptation of two widely used CAD/CAM systems and to study the effect of porcelain press veneering process on the prosthesis adaptation. MATERIALS AND METHODS. Molar of a lower jaw typodont resin model was prepared by adjusting a 1.0 mm circumferential chamfer, an occlusal reduction of 2.0 mm, and a $5^{\circ}$ convergence angle and was duplicated as an abrasion-resistant master die. The monolithic crowns and copings were fabricated with two different CAD/CAM system-Ceramil and Zirkonzahn systems. Two kinds of non-destructive analysis methods are used in this study. First, weight technique was used to determine the overall fitting accuracy. And, to evaluate internal and marginal fit of specific part, replica technique procedures were performed. RESULTS. The silicone weight for the cement space of monolithic crowns and copings manufactured with Ceramil system was significantly higher than that from Zirkonzahn system. This gap might cause the differences in the silicone weight because the prostheses were manufactured according to the recommendation of each system. Marginal discrepancies of copings made with Ceramil system were between 106 and $117{\mu}m$ and those from Zirkonzahn system were between 111 and $115{\mu}m$. Marginal discrepancies of copings made with Ceramil system were between 101 and $131{\mu}m$ and those from Zirkonzahn system were between 116 and $131{\mu}m$. CONCLUSION. Marginal discrepancy was relatively lower in Ceramil system and internal gap was smaller in Zirkonzahn system. There were significant differences in the internal gap of monolithic crown and coping among the 2 CAD/CAM systems. Marginal discrepancy produced from the 2 CAD/CAM systems were within a reported clinically acceptable range of marginal discrepancy.