• 제목/요약/키워드: Dicalcium silicate (C2S)

검색결과 10건 처리시간 0.022초

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권spc1호
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

GGBFS 페이스트 및 모르타르의 탄산 : γ-Dicalcium 규산염 대체가 기계적 특성 및 미세 구조 특성에 미치는 영향 (Carbonation of GGBFS paste and mortar: Effect of γ-Dicalcium Silicate Replacement to Mechanical Properties and Microstructure Characteristics)

  • 트란 득 탄;이윤수;옌스뤠이;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.71-72
    • /
    • 2020
  • γ-dicalcium silicate (γ-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of γ-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. Three curing conditions including un-carbonation, natural carbonation, and accelerated carbonation were applied to the research. Besides, hydration products after the carbonation process are also detected. What's more, the carbonation treatment method also meets the requirement of capture more greenhouse gas and recycles the waste products of metallurgy.

  • PDF

난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향 (Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates)

  • 공헌;권기범;박상진;노효섭;이상진
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

합성 및 원료 조건에 따른 γ-C2S의 순도 (Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions)

  • 이석희;조형규
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.123-128
    • /
    • 2020
  • γ-C2S(γ-Calcium Silicate)는 벨라이트(belite)의 다형성으로 알려져 있다. γ-C2S는 CO2 고정 능력이 우수하고 제조 시 CO2 배출량이 적은 공정으로 인해 최근 많은 관심을 받고 있는 시멘트계 재료이다. 본 연구에서는 γ-C2S의 건축재료로써 활용하기 위하여 γ-C2S의 고순도 합성을 위한 다양한 합성방법을 조사하고 이를 기반으로 조건별 합성 실험 및 분석을 실시하였으며 γ-C2S의 순도에 대한 다양한 원료와 소성 온도가 미치는 영향도 평가하였다. 여러 종류의 Ca 결합물 재료가 Ca 공급원으로 사용 되었고 Si 소스 공급원으로는 Si가 주성분인 SiO2가 사용되었다. 각각의 원료는 혼합 후 다양한 조건에서 소성시켰다. 그 결과 Ca(OH)2와 SiO2 분말을 원료로 합성하였을 때 최고 높은 γ-C2S 순도를 얻을 수 있었다. 그리고 γ-C2S 제조 실용화를 위해 천연 광물인 석회암 분말과 실리카 모래를 원료로 한 분말을 사용하여 다양한 소성온도에서 합성하였으며 그 결과 합성한 샘플의 γ-C2S의 순도는 77.6%로 나타났다.

Characterization of Cation Exchange and Cesium Selectivity of Synthetic Beta-Dicalcium Silicate Hydrate

  • El-Korashy, S.A.
    • 대한화학회지
    • /
    • 제46권6호
    • /
    • pp.515-522
    • /
    • 2002
  • 240$^{\circ}C$와 Ca/Si=2 몰 비율의 열수상태에서 합성된 고체 베타-디칼슘 실리케이트 하이드레이트($\beta-C_2$SH)는 Fe, Cu, Zn, Cd, 및 Pb와 같은 2가 금속 양이온에 대한 양이온 교환 성질을 보여준다. 그 고체에 희한 금속 양이온 흡인력은 $Fe^{2+}$$Cu^{2+}$$Zn^{2+}$$Cd^{2+}$ = $Pb^{2+}$의 순서로 됨이 밝혀졌다. 고체에 세슘 선택성은 $Li^+$, $Na^+$$K^+$와 같은 1가 양이온이나 $Ca^{++}$, $Mg^{++}$$Ba^{++}$와 같은 2가 양이온이 $Cs^+$보다 백배이상 진한 상태에서 나타내었다. $Cs^+$의 흡인력은 $Mg^{++}$의 존재하에서 최대치를 보여주었고, 반면에 $K^+$의 존재하에서 최소치를 보여주었다. 2가 금속이온에 대한 $\beta-C_2$SH의 다른 친화도는 이들 이온을 분리하는데 사용 할수 있다. 또한 $\beta-C_2$SH에 희한 금속 양이온 교환에 대한 반응경로 및 세슘 선택성이 연구되었다.

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements

  • Lim, Jiwon;Guk, Jae-Geun;Singh, Bhupendra;Hwang, Yun-Chan;Song, Sun-Ju;Kim, Ho-Sung
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.403-411
    • /
    • 2019
  • In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.

Analyzing the compressive strength of clinker mortars using approximate reasoning approaches - ANN vs MLR

  • Beycioglu, Ahmet;Emiroglu, Mehmet;Kocak, Yilmaz;Subasi, Serkan
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.89-101
    • /
    • 2015
  • In this paper, Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) models were discussed to determine the compressive strength of clinker mortars cured for 1, 2, 7 and 28 days. In the experimental stage, 1288 mortar samples were produced from 322 different clinker specimens and compressive strength tests were performed on these samples. Chemical properties of the clinker samples were also determined. In the modeling stage, these experimental results were used to construct the models. In the models tricalcium silicate ($C_3S$), dicalcium silicate ($C_2S$), tricalcium aluminate ($C_3A$), tetracalcium alumina ferrite ($C_4AF$), blaine values, specific gravity and age of samples were used as inputs and the compressive strength of clinker samples was used as output. The approximate reasoning ability of the models compared using some statistical parameters. As a result, ANN has shown satisfying relation with experimental results and suggests an alternative approach to evaluate compressive strength estimation of clinker mortars using related inputs. Furthermore MLR model showed a poor ability to predict.

가속 탄화 조건에서 γ-C2S 첨가가 모르타르 함유 GGBFS의 특성에 미치는 영향 (Effect of γ-C2S Addition on the Properties of GGBFS Containing Mortar in Accelerated Carbonation Curing)

  • 트란 득 탄;이한승;싱 지텐드라 쿠마
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2020
  • 𝛾-dicalcium silicate (𝛾-C2S) is characterized by its strong carbonation reactivity and has the prospect to be utilized as a building material with the added benefit of CO2 capture. This paper aims to point out the impact of 𝛾-C2S on the microstructure characteristics and mechanical properties of GGBFS paste, and mortar samples. The compressive strength of 𝛾-C2S added GGBFS cement mortar is higher compared to without 𝛾-C2S in accelerated carbonation (AC) up to 14 days of curing but once the curing duration is increased, there is no significant improvement in compressive strength. This study suggests that 𝛾-C2S can capture the atmospheric CO2 (mostly generated from cement and metallurgy industries) and utilized in construction.

  • PDF

명반석을 이용한 알루미나 시멘트의 제조 (II) (알루미나 시멘트의 특성) (Studies on Alumina Cement from Alunite (II) (Physical Properties of Alumina Cement))

  • 한기성;최상욱;송태웅
    • 한국세라믹학회지
    • /
    • 제16권3호
    • /
    • pp.164-168
    • /
    • 1979
  • In the previous paper, it was reported that formation of desirable calcium alunimate(CA) in clinker was considerably affected by sulfur-contaminated alumina which was prone to form a disadvantageous mineral, $C_4A_3S$. In this study, however, sulphate-free alumina cement was made from sulfur-free alumina refined from alunite and corresponding materials. The major minerals in the clinker were identified by X-ray diffraction patterns as calcium aluminate (CA), calcium dialuminate $(CA_2)$ and dicalcium alumino silicate $(C_2AS)$. The formation of CA was more effective with decreasing contents of silica to 2 per cent or less and sulfur in the refined alumina. Physical properties of prepared alumina cement such as setting time, stability and compressive strength were measured. The values were similar to those of commercial alumina cements.

  • PDF