Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin (Department of architectural system engineering, Hanyang university) ;
  • Lee, Han-seung (Department of architectural engineering, Hanyang university) ;
  • Cho, Hyeong-Kyu (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2018.12.09
  • Accepted : 2019.06.25
  • Published : 2019.07.01

Abstract

γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Keywords

References

  1. Mu. Y, Xue. G, Zhao. S, Huang. X, Wang. F, J. Chinese Ceramic Soc. 45 (2017) 1198-1203.
  2. T. Saito, S. Khamhou, T. Yumoto, and N. Otsuki, J. Adv. Con. Tech. 9[3] (2011) 223-230. https://doi.org/10.3151/jact.9.223
  3. T. Saito, E. Sakai, M. Morioka and M. Daimon, J. Adv. Con. Tech. 5[3] (2007) 333-341. https://doi.org/10.3151/jact.5.333
  4. X. Guan, S. Liu, C. Feng, M. Qiu, Const. and Bui. Mater. 114 (2016) 204-207. https://doi.org/10.1016/j.conbuildmat.2016.03.208
  5. J. Chang, Y. Fang and X. Shang, Mater. and Struc. 49 (2016) 4417-4424. https://doi.org/10.1617/s11527-016-0797-5
  6. K. Watanabe, K. Yokozeki, R. Ashizawa, N. Sakata, M. Morioka and E. Sakai, Waste Manage 26 (2006) 752-757. https://doi.org/10.1016/j.wasman.2006.01.030
  7. S. Tsuyoshi, S. Etsuo, M. Minoru and O. Nobuaki, J. Adv. Con. Tech. 8 (2010) 273-280. https://doi.org/10.3151/jact.8.273
  8. S. Khamhou, S. Tsuyoshi, O. Nobuaki and Y. Tatsuya, J. Soc. Mater. Sci. 61 (2012) 299-307. https://doi.org/10.2472/jsms.61.299
  9. T. Higuchi, T. Morioka, I. Yoshioka and K. Yokozeki, Const. and Build. Mater. 67 (2014) 338-343. https://doi.org/10.1016/j.conbuildmat.2014.01.029
  10. R. Sakurada, A. Singh, B. Yakobson, M. Uzawa, and Y. Kawazoe, in Proceedings of the 33rd Conference on Our World In Concrete & Structures, August 2008, edited by K.C.G Ong, C.T. Tam, T.H. Tan (Singapore CI-Premier Pte. Ltd, 2008) p.25.
  11. S. Lee, K. Kim and M. Song, J. Korea Cer. Soc. 53[2] (2016) 194-199. https://doi.org/10.4191/kcers.2016.53.2.194
  12. M. Lesti, C. Tiemeyer and J. Plank, Cem. And Con. Res. 45 (2013) 45-54. https://doi.org/10.1016/j.cemconres.2012.12.001
  13. K. Watanabe, K. Yokozeki, R. Ashizawa, N. Sakata, M. Morioka, E. Sakai, M. Daimon, Waste Manage 26 (2006) 752-757. https://doi.org/10.1016/j.wasman.2006.01.030
  14. M. Sung, H. Cho and H. Lee, J. Korea Inst. Build. Const. 15[3] (2015) 281-289. https://doi.org/10.5345/JKIBC.2015.15.3.281
  15. L. Kriskova , Y. Pontikes , F. Zhang, O. Cizer, P. Jones, K. Balen, and B. Blanpain. Cem. and Con. Res. 55 (2014) 59-68. https://doi.org/10.1016/j.cemconres.2013.10.004
  16. L. Songhui, G. Xuemao, Q. Man and F. Chunhua, J. Chinese Ceramic Soc. 45 (2016) 658-662.
  17. Y. Mu, G. Xue, S. Zhao, X. Huang and F. Wang, J. Chinese Ceramic Soc. 45 (2017) 1197-1203.
  18. M. Morioka, K. Yamamoto, T. Torichigal and K. Yokozeki, Cem. Sci. and Con. Tech. 64 (2011) 29-34.