• Title/Summary/Keyword: Diamond like carbon

Search Result 382, Processing Time 0.042 seconds

Characteristics of Diamond Like Carbon Film Fabricated by Plasma Enhanced Chemical Vapor Deposition Method with mixed Ar, N2 gas rate (혼합된 Ar, N2 가스 유량에 따른 PECVD 방법에 의하여 제작된 다이아몬드 상 탄소 박막의 특성)

  • Gang, Seong-Ho;Kim, Byeong-Jin;Bae, Gyeong-Tae;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.87-87
    • /
    • 2018
  • 다이아몬드 상 탄소(diamond-like carbon, DLC)는 상당량의 $sp^3$ 결합을 가지는 비정질 탄소(a-C) 또는 수소화 비정질 탄소(a-C:H)로 이루어진 준안정 형태의 탄소이다. DLC는 전기 저항과 굴절률이 높고 화학적으로 다른 물질과 반응하지 않으며, 마찰계수가 낮고 경도가 높아 자기 디스크, 광학 소자 등의 다양한 분야에서 적용되고 있다[1,2]. 또한 다이아몬드에 비해 상온에서 성장이 가능할 정도로 합성온도가 낮아 적용 기판의 제한이 거의 없고, 증착 방법과 조건에 따라 탄소 결합의 다양성과 비정질성이 변화하기 때문에 넓은 범위의 특성을 얻을 수 있는 장점이 있다. 지금까지 DLC 박막의 광학적 특성, 특히 굴절률, 광학적인 에너지 밴드 갭, 자외선과 적외선 투과성에 대해서는 많은 연구가 진행되었으나 가시광선의 투과성에 대한 연구는 제한적이며[4], 가시광선 투과도 개선에 대한 연구는 전무하다. 본 연구에서는 ITO 기판 위에 DLC를 합성하고 기계적 특성과 가시광선 영역 투과도를 조사하였다. RF-PECVD(radio frequency plasma enhanced chemical vapor deposition) 방법에 의해서 $C_2H_2+Ar$ 혼합 가스 비율과 $C_2H_2+N_2$ 혼합 가스 비율을 변화시켜 ITO 기판 위에 DLC 박막을 합성하였다. 공정 압력과 rf-power, 증착시간, 기판온도는 0.2 torr, 40 W, 5 분, $50^{\circ}C$로 고정하고, 공정 가스는 $C_2H_2+Ar$$C_2H_2+N_2$가 200 sccm이 되도록 비율을 변화하였다. $C_2H_2:Ar$$C_2H_2:N_2$의 비율은 180 : 20, 160 : 40, 140 : 60, 120 : 80, 100 : 100이 되도록 가스의 유량을 조절하였다. 투과도는 가시광선(380 ~ 780 nm) 범위에서 측정하였고 두께와 표면조도는 AFM으로 측정하였다. 투과도는 $C_2H_2+Ar$의 Ar 가스 비율이 증가할수록 증가해 140 : 60일 때 최댓값을 나타낸 후 다시 감소하였다. $C_2H_2+N_2$ 투과도는 $N_2$ 가스 비율이 증가할수록 감소하는 경향을 나타내었다. 표면 거칠기는 $C_2H_2+Ar$ 혼합 가스를 사용한 경우의 Ar의 가스 비율이 증가할수록 증가하였다. 그러나 $C_2H_2+N_2$ 혼합 가스를 사용한 경우에는 $N_2$ 가스의 혼합 비율이 증가할수록 감소하였다.

  • PDF

Effect of the additive gas on the bonding structure and mechanical properties of the DLC films deposited by RF-PECVD (RF-PECVD법에 의해 증착된 DLC 박막의 결합구조와 기계적 특성에 관한 보조가스의 영향)

  • Choi, Bong-Geun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.145-152
    • /
    • 2015
  • In this work, we were investigated the effect of the additive gases on the relationship between bonding structure and mechanical properties of the deposited films when the DLC films were deposited on Si-wafer by the rf-PECVD method with the addition of small amounts of carbon dioxide and nitrogen to the mixture gas of methane and hydrogen. The deposition rate of the films increased as the rf-power increased, while it decreased with increasing the amount of additive gases. Also, as the carbon dioxide gas increased, the hydrogen content in the films decreased but the $sp^3/sp^2$ ratio of the films increased. In case of nitrogen gas, the hydrogen content decreased, however the $sp^3/sp^2$ ratio and nitrogen gas flow rate did not show a specific tendency.

Effect of Humidity on Tribological Behavior of Si-DLC/DLC Multi-layer

  • Yi, J.W.;Kim, J.K.;Kim, S.S.;Kim, D.G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.159-160
    • /
    • 2002
  • To investigate the humidity effect on tribological behaviors of Si-DLC/DLC multi-layers, the samples were prepared using a system consisted of an ion-gun for deposition DLC films and a balanced magnetron sputter for introducing silicon atoms to Si-DLC films. The Si-DLC/DLC multi-layers were composed of pure DLC films and Si-incorporated DLC films alternatively and had different bilayer numbers. Hardness and residual stress were drastically decreased through the formation of Si-DLC/DLC multi-layers compared to those of the pure and Si-incorporated DLC films. Wear results obtained under the various humidity conditions (<10%, $40{\sim}50%$, and >85%) showed that the pure DLC film was largely depended on the humidity while the Si-DLC and the Si-DLC/DLC multi-layers were little affected by the environmental humidity. Although friction coefficients of all samples were increased with the relative humidity, the multi-layer films showed relatively lower friction coefficients that those of the single films.

  • PDF

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Reliability Improvement of the Electro Optical Tracking System by using DLC Films (DLC 박막을 통한 전자광학추적장비 신뢰성 개선)

  • Shim, Bo-Hyun;Jo, Hee-Jin;Kim, Jang-Eun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.197-205
    • /
    • 2015
  • The Diamond Like Carbon(DLC) films for the Electro Optical Tracking System(EOTS) by using Plasma Enhanced Chemical Vapor Deposition(PECVD) method is presented. We achieve that the DLC films can reduce the surface delamination of thermal observation sensor front window due to the high hardness, low friction and chemical inertness which is comparable to a Si film. According to our experiment results, DLC films can be used for various electro optical systems to eliminate surface delamination.

Electro-Optical Characteristics of the Ion-Beam-Aligned FFS-LCD on a Diamond-like-Carbon Thin Film

  • Hwang, J.Y.;Park, C.J.;Seo, D.S.;Jeong, Y.H.;Kim, K.C.;Ahn, H.J.;Baik, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1132-1136
    • /
    • 2004
  • In this paper, we intend to make FFS mode cell with LC alignment used non-rubbing method, ion beam alignment method on the a-C:H thin film, to analyze electro-optical characteristics in this cell. We studied on the suitable inorganic thin film for FFS-LCD and the aligning capabilities of nematic liquid crystal (NLC) using the new alignment material of a-C:H thin film as working gas at rf bias condition. A high pretilt angle of about 5$^{\circ}$ by ion beam(IB) exposure on the a-C:H thin film surface was measured. An excellent voltage-transmittance (V-T) and response time curve of the ion-beam-aligned FFS-LCD was observed with oblique ion beam exposure on the DLC thin films.

  • PDF

Tribological Properties of DLC for Die Applications

  • Lee, Kyu-Yong;Liu, Zhen-Hua
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • Friction and wear affect all processes involved in the extraction of materials and their conversion into finished products in the die applications such as drawing, extrusion etc. Originating phenomenon from the contact surface between the tool and workpiece, they are usually a hindrance to materials process operations which usually result in damaging the tools, increasing energy consumption, the contamination of processed material by wear particles and also some problems associated with technologies to control friction and wear. The most well established method to control friction and wear is by the application of lubricant such as fluorocarbon. Besides, a surface technique so-called surface modification can be applied to solve the tribology problems of the die applications for both the economical and ecological reasons. In this article, we applied DLC(diamond-like carbon) thin film on alumina ceramic for HT test using the PIID(plasma ion immersion deposition), 4 groups of test specimens were tested up to $200^{\circ}C$ which is a little higher than the normal working temperature of die application. Pin-on-disc tribo-tester was used to test the friction and surfaces were characterized by SEM and EDS and else, the morphology changes of DLC coatings were studied. The present work indicated that the DLC had a great potential to reduce the friction and wear in the alumina die application without lubricants.

  • PDF

Development of surface treatment materials for improving durability of metallic bipolar plates in PEMFC (연료전지용 금속분리판 내구성 향상을 위한 표면처리기술 개발)

  • Kim, Myong-Hwan;Goo, Young-Mo;Yoo, Seung-Eul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.41-44
    • /
    • 2008
  • 본 연구에서는 고분자 전해질 연료전지용 금속분리판의 전기화학적 부식을 방지하기 위한 금속 첨가 DLC(Diamond-like-carbon) 표면처리 방법을 개발하였으며, stainless steel 304를 모재로 하여 텅스텐 첨가 DLC, 티타늄 첨가 DLC, 몰리브덴 첨가 DLC 금속분리판을 제작하였다. 제작된 금속분리판을 이용하여 내구성 평가,전기화학적 부식 특성, 성능평가 및 접촉저항 특성 등을 평가하였다. 전기화학적 부식특성의 경우 각각의 분리판에 대해 6.69, 1.2, 1.0 ${\mu}A/cm^2$로 모재인 STS 304의 25 ${\mu}A/cm^2$의 부식전류밀도에 비해 우수한 부식특성을 보였다. 또한 초기 성능에서 몰리브덴 첨가 DLC 분리판의 경우 300 mA/$cm^2$에서 0.757 V로 측정되었으며, 이는 graphite 분리판 측정 결과인 0.758 V와 유사한 성능을 보였다. 또한 내구성 평가에서 초기 성능 대비 성능 감소율이 10% 감소하는데 소요된 시간은 graphite 분리판의 경우 2,000시간으로 나타났으며, 몰리브덴 첨가 DLC 분리판의 경우 1,700시간으로 측정되었다. 1,500시간 까지의 성능 감소율은 grphite,텅스텐 첨가DLC,티타늄 첨가DLC, 몰리브덴 첨가 DLC 분리판 순으로 각각에 대해 37.7, 60.3, 92.8, 45.7 ${\mu}V$/hr로 나타났다.

  • PDF

Preparation and Investigation of Characteristics of Diamond-like Carbon Thin Films by Acetylene Plasma (아세틸렌 플라스마를 이용한 다이아몬드성 탄소 박막의 제작 및 특성)

  • Youk, Do Jin;Kang, Sung Soo;Lee, Won Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • The a-C:H films have been grown on the glass substrate by PECVD mathod, where plasma was generated with a 60Hz line power source. The carbonization is checked from peak intensities of D($sp^3$) and G($sp^2$) peaks in Raman spectra. The hydronization and C-H bonding status in films can also be determined from FTIR results. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $C_2H_2$. Judging from above results, we can conclude that the best value for partial pressure of $C_2H_2$ in growing process of thick films is about 15%.

  • PDF

Characterization of Fracture Toughness and Wear Behavior for Plasma Ceramic Coated Materials (플라즈마 코팅재료의 파괴인성과 마모 거동)

  • Ha, Sun-Ho;Lee, Dong-Woo;Rehman, Atta Ur;Wasy, Abdul;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.123-130
    • /
    • 2013
  • Zirconia is well known in industrial applications for its mechanical characteristics. DLC (diamond-like carbon) have high elastic modulus, high electric resistivity, high dielectric constant, high wear resistance, low friction coefficient, bio compatibility, chemically inert and thermally stable. Because of all these physical and chemical properties these types of coatings have become key procedure for thin coating. Friction coefficient of DLC films is already evaluated and the current work is a further advancement by calculating the fracture toughness and wear resistance of these coatings. In the present study DLC thin film coatings are developed on $ZrO_2$ alloy surface using Plasma Enhanced Chemical Vapor Deposition (PECVD) method. Vicker hardness test is employed and it was concluded that, DLC coatings increase the Vickers hardness of ceramics.