DOI QR코드

DOI QR Code

Effect of the additive gas on the bonding structure and mechanical properties of the DLC films deposited by RF-PECVD

RF-PECVD법에 의해 증착된 DLC 박막의 결합구조와 기계적 특성에 관한 보조가스의 영향

  • Choi, Bong-Geun (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2015.07.30
  • Accepted : 2015.08.17
  • Published : 2015.08.31

Abstract

In this work, we were investigated the effect of the additive gases on the relationship between bonding structure and mechanical properties of the deposited films when the DLC films were deposited on Si-wafer by the rf-PECVD method with the addition of small amounts of carbon dioxide and nitrogen to the mixture gas of methane and hydrogen. The deposition rate of the films increased as the rf-power increased, while it decreased with increasing the amount of additive gases. Also, as the carbon dioxide gas increased, the hydrogen content in the films decreased but the $sp^3/sp^2$ ratio of the films increased. In case of nitrogen gas, the hydrogen content decreased, however the $sp^3/sp^2$ ratio and nitrogen gas flow rate did not show a specific tendency.

rf-PECVD 방법에 의해서 $CH_4+H_2$ 혼합가스를 이용Si-웨이퍼 위에 DLC 박막을 증착할 때, 이산화탄소나 질소 등 보조가스가 증착된 박막의 결합구조와 기계적 특성에 미치는 영향을 고찰하였다. DLC 박막의 증착속도는 rf-power가 증가함에 따라서 증가하지만, 보조가스의 양이 증가함에 따라서는 감소하였다. 또한, 이산화탄소($CO_2$) 가스가 증가함에 따라 박막내 수소 함량은 감소하였으나, $sp^3/sp^2$ 결합 비는 증가하였다. 질소($N_2$) 가스가 증가하는 경우는 수소 함량은 감소하였으나, $sp^3/sp^2$ 결합비 변화에 있어 경향성은 보이지 않는 것으로 확인되었다.

Keywords

References

  1. S.J. Cho, K.R. Lee, K.Y. Eun, J.H. Hahn and D.H. Ko, "Evaluation of elastic properties of DLC films using substrate etching techniques", J. Kor. Ceram. Soc. 35 (1998) 813.
  2. Q. Wei, R.J. Narayan, J. Narayan, J. Sankar and A.K. Sharma, "Improvement of wear resistance of pulsed laser deposited diamond-like carbon films through incorporation of metals", Mater. Sci. and Eng. B53 (1998) 262.
  3. A. Grill, B.S. Meyerson, V.V. Patel, J.A. Reimer and M.A. Petrich, "Inhomogeneous carbon bonding in hydrogenated amorphous carbon films", J. Appl. Phys. 61 (1987) 2874. https://doi.org/10.1063/1.337883
  4. K. Enke, "Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbon layers", Thin Sold Films 80 (1981) 227. https://doi.org/10.1016/0040-6090(81)90226-1
  5. H. Tsai and D.B. Bogy, "Charaterization of diamond-like carbon films and their application as overcoats on thin-film media for magnetic recording", J. Vac. Sci. Technol. A 5 (1987) 3287. https://doi.org/10.1116/1.574188
  6. B. Kim and T. Grotjohn, "Comparison of a-C:H films deposited from methane-argon and acetylene-argon mixtures by electron cyclotron resonance-chemical vapor deposition discharges", Diamond Relat. Mater. 9 (2000) 37. https://doi.org/10.1016/S0925-9635(99)00186-7
  7. A. von Keudell and W. Jacob, "Interaction of hydrogen plasmas with hydrocarbon films, investigated by infrared spectroscopy using an optical cavity substrate", J. Vac. Sci. Technol. A 15(2) (1997) 402. https://doi.org/10.1116/1.580498
  8. E. Braca, J.M. Kenny, D. Korzec and J Engemann, "Transition from polymer-like to diamond-like carbon coatings synthesized by a hybrid radiofrequency-microwave plasma source", Thin Solid Films 394 (2001) 29. https://doi.org/10.1016/S0040-6090(01)01016-1
  9. R.O. Dillon, J.A. Woolam and V. Katkanant, "Use of Raman scattering to investigate disorder and crystallite formation in as deposited and annealed carbon films", Phys. Rev. B29 (1984) 3482.
  10. S.S. Camargo Jr., R.A. Santos, A.L. Baia Neto, R. Carius and F. Finger, "Structural modifications and temperature stability of silicon incorporated diamond-like a-C:H films", Thin Sold Films 332 (1998) 130. https://doi.org/10.1016/S0040-6090(98)01208-5
  11. T. Kawato and K. Kondo, "Effects of oxygen on CVD diamond synthesis", Jpn. J. Appl. Phy. 26 (1987) 1429. https://doi.org/10.1143/JJAP.26.1429
  12. J.H. Kaufman, S. Metin and D.D. Saperstein, "Symmetry breaking in nitrogen-doped amorphous carbon: Infrared observation of the Raman-active G and D bands", Phys. Rev. B39 (1989) 13053.
  13. K.R. Lee, Y.J. Baik and K.Y. Eun, "Stress relief behavior of diamond-like carbon films on glasses", Dia. Rel. Mater. 2 (1993) 218. https://doi.org/10.1016/0925-9635(93)90056-8
  14. D.F. Franceschini, C.A. Achete and F.L. Freire, Jr., "Internal stress reduction by nitrogen incorporation in hard amorphous carbon thin films", Appl. Phys. Lett. 60 (1992) 3229. https://doi.org/10.1063/1.106702
  15. V. Paishin, E.I. Meletis, S. Ves and S. Logothetidis, "Characterization of ion-beam-deposited diamond-like carbon films", Thin Solid Films 270 (1995) 165. https://doi.org/10.1016/0040-6090(95)06912-7
  16. G.J. Vandendentop, M. Kawasaki, R.M. Nix, I.G. Brown, M. Salmeron and G.A. Somorjai, "Formation of hydrogenated amorphous carbon films of controlled hardness from a methane plasma", Phys. Rev. B41 (1990) 3200.
  17. T. Yoshitake, T. Nishiyama and K. Nagayama, "The role of hydrogen and oxygen gas in the growth of carbon thin films by pulsed laser deposition", Diamond Relat. Mater. 9 (2000) 689. https://doi.org/10.1016/S0925-9635(99)00240-X
  18. T. Inoue, S. Ohshio, H. Saitoh and K. Kamata, "Preparation of nitrogen containing carbon films using chemical vapor deposition enhanced by electron cyclotron resonance plasma", Appl. Phys. Lett. 67 (1995) 353. https://doi.org/10.1063/1.115442
  19. W.C. Chan, M.K. Fung, K.H. Lai, I. Bello, S.T. Lee and C.S. Lee, "Mechanical properties of amorphous carbon nitride films synthesized by electron cyclotron resonance microwave plasma chemical vapor deposition", J. Non-Cryst. Solids. 254 (1999) 180. https://doi.org/10.1016/S0022-3093(99)00443-3
  20. D. Beeman, J. Silverman, R. Lynds and M.R. Anderson, "Modeling studies of amorphous carbon", Phys. Rev. B30 (1984) 870. https://doi.org/10.1103/PhysRevB.30.870
  21. L.A. Farrow, B.J. Wilkens, A.S. Gozdz and D.L. Hart, "Raman scattering and hydrogen-content analysis of amorphous hydrogenated carbon films irradiated with 200-KeV $C^+$ ions", Phys. Rev. B 41 (1990) 10132. https://doi.org/10.1103/PhysRevB.41.10132
  22. J. Shiao and R.W. Hoffman, "Studies of diamond-like and nitrogen-containing diamond-like carbon using laser Raman spectroscopy", Thin Solid Films 283 (1996) 145. https://doi.org/10.1016/0040-6090(95)08151-8
  23. M. Guerino, M. Massi, H.S. Maciel, C. Otani and R.D. Mansano, "The effects of the nitrogen on the electrical and structural properties of the diamond-like carbon (DLC) films", Microelectronics Journal 34 (2003) 639. https://doi.org/10.1016/S0026-2692(03)00079-X
  24. S. Kumar, "Unhydrogenated diamond-like carbon films prepared by dc plasma chemical vapor deposition at room temperature", Appl. Phys. Lett. 58 (1991) 1836. https://doi.org/10.1063/1.105073
  25. S.M. Smith, S.A. Voigh, H. Tompkins, A. Hooper, A.A. Talin and J. Vella, "Nitrogen-doped plasma enhanced chemical vapor deposited (PECVD) amorphous carbon:processes and properties", Thin Solid Films 398 (2001) 163.
  26. S.F. Yoon, K.H. Tan, R.J. Ahn, and Q.F. Huang, "Effect of microwave power on diamond-like carbon films deposited using electron cyclotron resonance chemical vapor deposition", Diam. Relat. Mater. 9 (2000) 2024. https://doi.org/10.1016/S0925-9635(00)00360-5
  27. M.S. Hwang and C. Lee, "Effects of oxygen and nitrogen addition on the optical properties of diamond-like carbon films", Mater. Sci. Eng. B75 (2000) 24. https://doi.org/10.1016/S0921-5107(00)00381-0
  28. M. Guerino, M. Massi, H.S. Maciel, C. Otani, R.D. Mansano, P. Verdonck and J. Libardi, "The influence of nitrogen on the dielectric constant and surface hardness in diamond-like carbon (DLC) films", Diamond Relat. Mater 13 (2004) 316. https://doi.org/10.1016/j.diamond.2003.10.016