• Title/Summary/Keyword: Diamond film

Search Result 446, Processing Time 0.026 seconds

Diamond Film Synthesis by MWCVD and Its Application to Cutting Tools (MWCVD에 의한 다이아몬드 필름의 합성과 절삭 공구에의 응용)

  • 서문규;김윤수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.979-985
    • /
    • 1993
  • Diamond films were synthesized using CH4-H2-Ar mixture gases by MWCVD, and cutting ability was tested after brazing them onto WC tools. Growth rates were in the range of 0.5~10${\mu}{\textrm}{m}$/hr depending on the deposition conditions, and diamond films with thickness of 100~300${\mu}{\textrm}{m}$ were obtained. Diamond tools brazed by RF induction method showed an enhanced cutting ability in the cutting test of Si single crystal rod.

  • PDF

Characterization of polycrystalline diamond thin films deposited by using an MPCVD (MPCVD를 이용한 다결정 다이아몬드 박막의 증착 및 물성 분석)

  • Lee, Jin-Bock;Park, Jin-Seok;Ryu, Kyung-Sun;Kwon, Sang-Jik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1330-1332
    • /
    • 1998
  • Polycrystalline diamond films are deposited on a Si substrate by employing a 2.45 GHz $\mu$-wave plasma CVD system. Prior to depositing the diamond film, a DPR(diamond photo-resist) layer is coated to enhance the nucleation density. The growth rate of diamond films increases with the $\mu$-wave power and approaches to be about $1.5{\mu}m/hr$ at 1100 W. Structural properties of diamond films deposited are characterized from their SEM photographs, Raman spectra, and AFM surface images. Lager grain size, higher intensity of diamond peak, and smoother surface are observed for films deposited at a higher power. The possible mechanism on the diamond growth is also discussed to explain the experimental results.

  • PDF

Growth of Highly Oriented Diamond Films by Microwave Plasma Chemical Vapor Deposition (마이크로파 플라즈마 화학기상증착법에 의한 HOD 박막 성장)

  • 이광만;최치규
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • Highly oriented diamond (HOD) films in polycrystalline can be grown on the (100) silicon substrate by microwave plasma CVD. Bias enhanced nucleation (BEN) method was adopted for highly oriented diamond deposition with high nucleation density and uniformity. The substrate was biased up to -250[Vdc] and bias time required for forming a diamond film was varied up to 25 minutes. Diamond was deposited by using $\textrm{CH}_4$/CO and $H_2$ mixture gases by microwave plasma CVD. Nucleation density and degree of orientation of the diamond films were studied by SEM. Thermal conductivity of the diamond films was ∼5.27[W/cm.K] measured by $3\omega$ method.

  • PDF

Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film (다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성)

  • Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Dae-Hoon;Kim, Min-Hye;Park, Hye-Bin;Jhee, Kwang-Hwan;Song, Kwang-Soup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

A Study on the Effect of Si Surface on Diamond Film Growth by AES (Diamond 박막 성장에 미치는 Si 표면 영향의 AES에 의한 연구)

  • Lee, Cheol-Ro;Sin, Yong-Hyeon;Im, Jae-Yeong;Jeong, Gwang-Hwa;Cheon, Byeong-Seon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1993
  • The effect of nucleation free energy related to Si surface states on diamond film growth behavior has been studied. Ar first, the three kinds of diamond thin films (A, B, C) were deposited on various Si substrates (A-Si, B-Si, C-Si) whose surfaces were polished with 1 ${\mu}m$ diamond paste, 6 ${\mu}m$ Al_2O_3$ powder and 12 ${\mu}m$ Al_2O_3$ powder respectively. And then, relative nucleation free energy calculated is ${\Delta}G_{A-Si}<{\Delta}G_{B-Si}<{\Delta}G_{C-Si}$. Although there are some difference in grain size, shape and nucleated size, the thin films on A-Si and B-Si were diamond including a small amount of DLC which was confirmed by AES, SEM, XRD, and RHEED. Namely, the diamonds of films (B) were not nucleated in scratches but in dents and larger in grain size compare with the film (C) of which diamond sere nucleated not only scratches but also dents. And, the sphere diamond which is not general shape was grown on C-Si. After all, the sphere was turned out to be the diamond including much graphite as a result of the AES in situ depth profiling. Consequently, the diamond shape and quality grown on Si were Changed from the crystal which the (100) and (110) planes were predominent to the crystal in which (111) plane was predominent, and newt to sphere shape diamond including much graphite according as the nucleation free energy increases.

  • PDF

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

High-Speed Deposition of Diamond Films by DC Plasma Jet (직류 플라즈마 제트를 이용한 고속 다이아몬드 막 증착기술)

  • Kim, Won-Kyu;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.949-951
    • /
    • 1992
  • A low pressure DC plasma jet has been used to obtain diamond films from a mixture of $CH_4$ and $H_2$ with high deposition rate (>1$\mu\textrm{m}$/min). The effects of the deposition conditions such as torch geometry, substrate temperature, gas mixing ratio, chamber pressure, axial magnetic field on the diamond film properties such as morphology, purity, uniformity of the film and deposition rate, etc. have been examined with the aid of Scanning Electron Microscopy, X-Ray Diffraction, and Raman Spectroscopy. Both the growth rate and particle size increased rapidly for low methane concentrations but saturated and the morphology changed from octahedral to cubic structure when the concentration exceeded 1.0 %. Higher growth rates (>1.5${\mu}m$/min) can be obtained by applying an axial magnetic field to the DC plasma jet. Diamond obtained from the magnetized plasma jet also shows a sharp peak at 1332.5$cm^{-1}$ in the Raman Spectra and this result implies that higher growth rate with a good quality diamond films can he obtained by applying an external magnetic field to the plasma jet.

  • PDF

Effect of argon dilution on diamond nucleation with bias enhancement (바이어스 부가에 따른 다이아몬드 핵생성에서 아르곤 혼합의 효과)

  • 서형기;안사리S.G.;트란란안;신형식
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.132-132
    • /
    • 2002
  • Diamond is well known as the hardest material in nature. It also has other unique bulk physical and mechanical properties, such as very high thermal conductivity and broad optical transparency, which enable a number of new applications now that large areas of diamond can be fabricated by the new diamond plasma chemical vapor deposition (CVD) technologies. A study on the effects of growth kinetics and properties of diamond films obtained by addition of argon (~7 vol. %) into the methane/hydrogen mixture is carried out using HFCVD system. A negative bias was used as a nucleation enhancement method in addition to the argon dilution. The scanning electron microscopy (SEM) image of surface morphology shows well faceted crystallites with a predominance of angular shapes corresponding to <100> and <110> crystalline surfaces. The nucleation density and growth rate with argon dilution is two orders of magnitude higher than without argon deposition. The Raman spectra show a good quality film whereas XPS spectra show existence of only diamond phase.

  • PDF