• Title/Summary/Keyword: Diagonalization method

Search Result 30, Processing Time 0.024 seconds

SOLUTIONS OF NONCONVEX QUADRATIC OPTIMIZATION PROBLEMS VIA DIAGONALIZATION

  • YU, MOONSOOK;KIM, SUNYOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.137-147
    • /
    • 2001
  • Nonconvex Quadratic Optimization Problems (QOP) are solved approximately by SDP (semidefinite programming) relaxation and SOCP (second order cone programmming) relaxation. Nonconvex QOPs with special structures can be solved exactly by SDP and SOCP. We propose a method to formulate general nonconvex QOPs into the special form of the QOP, which can provide a way to find more accurate solutions. Numerical results are shown to illustrate advantages of the proposed method.

  • PDF

Novel User Selection Algorithm for MU-MIMO Downlink System with Block Diagonalization (Block Diagonalization을 사용하는 하향링크 시스템에서의 MU-MIMO 사용자 스케쥴링 기법)

  • Kim, Kyunghoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.77-85
    • /
    • 2018
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) is the core technology for improving the channel capacity compared to Single-User MIMO (SU-MIMO) by using multiuser gain and spatial diversity. Key problem for the MU-MIMO is the user selection which is the grouping the users optimally. To solve this problem, we adopt Extreme Value Theory (EVT) at the beginning of the proposed algorithm, which defines a primary user set instead of a single user that has maximum channel power according to a predetermined threshold. Each user in the primary set is then paired with all of the users in the system to define user groups. By comparing these user groups, the group that produces a maximum sum rate can be determined. Through computer simulations, we have found that the proposed method outperforms the conventional technique yielding a sum rate that is 0.81 bps/Hz higher when the transmit signal to noise ratio (SNR) is 30 dB and the total number of users is 100.

Channel Quantization for Block Diagonalization with Limited Feedback in Multiuser MIMO Downlink Channels

  • Moon, Sung-Hyun;Lee, Sang-Rim;Kim, Jin-Sung;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Block diagonalization (BD) has been proposed as a simple and effective technique in multiuser multiple-input multiple-output (MU-MIMO) broadcast channels. However, when channel state information (CSI) knowledge is limited at the transmitter, the performance of the BD may be degraded because inter-user interference cannot be completely eliminated. In this paper, we propose an efficient CSI quantization technique for BD precoded systems with limited feedback where users supported by a base station are selected by dynamic scheduling. First, we express the received signal-to-interference-plus-noise ratio (SINR) when multiple data streams are transmitted to the user, and derive a lower bound expression of the expected received SINR at each user. Then, based on this measure, each user determines its quantized CSI feedback information which maximizes the derived expected SINR, which comprises both the channel direction and the amplitude information. From simulations, we confirm that the proposed SINR-based channel quantization scheme achieves a significant sum rate gain over the conventional method in practical MU-MIMO systems.

A Poof of Utkin's Theorem for a SI Uncertain Linear Case (Utkin 정리의 단일입력 불확실 선형 시스템에 대한 증명)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.8-14
    • /
    • 2011
  • In this note, a proof of Utkin's theorem is presented for SI(Single input) uncertain linear systems. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods is proved clearly and comparatively for SI uncertain linear systems. With respect to the sliding surface transformation, the equation of the sliding mode i.e., the sliding surface is invariant. The control inputs by the two transformation methods both have the same gains. By means of the two transformation methods, the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.

Hierarchical optimal control of decentralized discrete-time system for process automation (분산 이산시간 시스템의 공정 자동화를 위한 계층적 최적제어)

  • 김현기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.209-213
    • /
    • 1987
  • This paper presents decentralized discrete-time system which is optimized by hierarchical control for process automation via the extended interaction balance method. This proposed method can control general matrix which input matrix is not block diagonalization. Also, this paper shows convergence condition of proposed method.

  • PDF

Locally Linear Embedding for Face Recognition with Simultaneous Diagonalization (얼굴 인식을 위한 연립 대각화와 국부 선형 임베딩)

  • Kim, Eun-Sol;Noh, Yung-Kyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.235-241
    • /
    • 2015
  • Locally linear embedding (LLE) [1] is a type of manifold algorithms, which preserves inner product value between high-dimensional data when embedding the high-dimensional data to low-dimensional space. LLE closely embeds data points on the same subspace in low-dimensional space, because the data points have significant inner product values. On the other hand, if the data points are located orthogonal to each other, these are separately embedded in low-dimensional space, even though they are in close proximity to each other in high-dimensional space. Meanwhile, it is well known that the facial images of the same person under varying illumination lie in a low-dimensional linear subspace [2]. In this study, we suggest an improved LLE method for face recognition problem. The method maximizes the characteristic of LLE, which embeds the data points totally separately when they are located orthogonal to each other. To accomplish this, all of the subspaces made by each class are forced to locate orthogonally. To make all of the subspaces orthogonal, the simultaneous Diagonalization (SD) technique was applied. From experimental results, the suggested method is shown to dramatically improve the embedding results and classification performance.

Design of Approximate Feedback Controller for Two-Time-Scale Aircraft Dynamics (양시등급 항공기 동력학의 근사 궤환 제어기 설계)

  • Shim, Kyu-Hong;Sawan, M.E.;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.58-64
    • /
    • 2004
  • A new method to obtain approximate solutions by placing the only poles of the slow subsystem for the two-time-scale aircraft dynamic systems. The two kinds of approximate solutions are obtained by a matrix block diagonalization. One is called the uncorrected solution, and the other is called the corrected solution. The former has an error of $O({\varepsilon})$, and the latter has an error of $O({\varepsilon}^2)$. Of course, both solutions are robust enough even though they are reduced solutions. The excellence of the proposed method is illustrated by an numerical example of an aircraft longitudinal dynamics.

A DIRECT SOLVER FOR THE LEGENDRE TAU APPROXIMATION FOR THE TWO-DIMENSIONAL POISSON PROBLEM

  • Jun, Se-Ran;Kang, Sung-Kwon;Kwon, Yong-Hoon
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.25-42
    • /
    • 2007
  • A direct solver for the Legendre tau approximation for the two-dimensional Poisson problem is proposed. Using the factorization of symmetric eigenvalue problem, the algorithm overcomes the weak points of the Schur decomposition and the conventional diagonalization techniques for the Legendre tau approximation. The convergence of the method is proved and numerical results are presented.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.