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SOLUTIONS OF NONCONVEX QUADRATIC OPTIMIZATION
PROBLEMS VIA DIAGONALIZATION

MOONSOOK YU AND SUNYOUNG KIM

ABSTRACT. Nonconvex Quadratic Optimization Problems (QOP) are solved approx-
imately by SDP (semidefinite programming) relaxation and SOCP (second order cone
programmming) relaxation. Nonconvex QOPs with special structures can be solved
exactly by SDP and SOCP. We propose a method to formulate general nonconvex
QOPs into the special form of the QOP, which can provide a way to find more accu-
rate solutions. Numerical results are shown to illustrate advantages of the proposed
method.

1. INTRODUCTION

We consider the following general quadratic optimization problem:
(QOP) z*:= minimize 27Quz +2¢{z

(1) subject to 2T Q;z + 2q;fr:c +v<0,i=1,...,m,
where ; is an n X n symmetric matrix, ¢; € R® and y; € Rfor ¢+ =0,1,2,...,m.
The feasible region of the QOP by F is denoted by:
F = {z¢ CO:xTQpa:—i-qgm-l—fyp <0(p=1L2,...,m)}.

We assume that Cj is a bounded polyhedral set represented by a finite number of linear
inequalities in practice, although Cy can be any compact convex subset of R" in theory.

If al Q; (i = 0,1,...,m) are positive semidefinite, (1) becomes a convex problem.
Many available software [3, 16, 15] can be used to find a minimizer because in this case
every local minimizer is a global minimizer.

The above problem (1) represents indefinite quadratic optimization problem. Many
difficult nonconvex optimization problems arise in various combinatorial optimization
problems such as linearly constrained nonconvex quadratic programs, maximum clique
problems and 0—1 integer programs. Finding solutions of nonconvex QOP (1) is known
to be NP-hard problem. As a consequence, obtaining approximate solutions of (1) has
provided as a way to solve (1) currently.

Approximate solutions can be obtained by relaxing a feasible region to a convex
region. This gives a larger feasible region and resulting solutions have smaller objective
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values. One of other popular techniques in finding approximate solutions is to derive a
tighter lower bound of the minimal objective value.

Relaxing a feasible region by lift and project convex relaxation methods ([1, 2, 4, 5,
7,9, 11, 12, 13, 14, 17]) has been one of the most popular methods. The semidefinite
programming relaxation (SDP) of (QOP) and linear programming relaxation (LP) have
been used extensively to obtain approximate solutions.

The semidefinite programming relaxation of (QOP) is

(SDP) 25PP .= minimize MyeX
) subject to M;e X <0,i=1,...,m
Xoo=Mmi1e X =1,
X >0,

where
and

If we remove the constraints X > 0in (2), the resulting relaxation is the LP relaxation
method. The SDP relaxation of the nonconvex feasible region F of the QOP is in the
worst case as effective as the LP relaxation. Also, it is known that the SDP relaxation
is more effective the the LP relaxation in theory and practice. However, solving an SDP
with large dimension involves expensive computational work while an LP provides a
solution in much less time. The SOCP relaxation was proposed in [6] to improve the
effectiveness of the LP relaxation and efficiency of SDP relaxation. The SOCP can be
viewed as a compromise between the SDP and LP relaxation.

Notice that X > 0 indicates that for any nonzero vector v, ¥7 Xv > 0. Instead of
requiring X > 0 for any nonzero vector, we only choose convenient vectors to satisfy
the condition. Therefore, a solution obtained by the SOCP relaxation may not be as
good as the one from SDP relaxation, but can be found in much less time. In the same
token, a solution from the SOCP relaxation is more effective than the one from an
LP and takes more time than the LP relaxation in general. If the matrix ();’s have a
special structure, e.g., all off-diagonal elements of (); are nonpositive, then the SOCP
relaxation is shown to yield the exact solution of (QOP) [8].

The aim of this paper is to solve (QOP) by diagonalization of Q; (i =0,1,...,m).
Transforming @Q); into a diagonal matrix results in the SOCP relaxation with more
variables. The changes are proposed based on the results that (QOP) with diagonal
Q; can be solved exactly, not approximately in [8]. This formulation is also easy to
handle in terms of the matrix (J; and gives effective soltuions. Although it is difficult to
obtain the exact solution of (QOP), diagonalization is proved to give better solutions
- of (QOP).
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This paper is organized as follows: Section 2 includes preliminary results for (QOP)
with special structures. We describe the diagonal transformation in Section 3 and as a
result, obtain SDP and SOCP relaxations. Section 4 contains numerical experiments
for the transformed problems. Section 5 is devoted to concluding discussions.

2. SOLVING QUADRATIC OPTIMIZATION PROBLEMS WITH SDP AND SOCP

We describe the conditions of (QOP) to be solved exactly by SDP and SOCP in
[8] in this section. As mentioned in Section 1, solving a SDP or SOCP provides an
approximate solution for (QOP) in general. A class of (QOP) with special structures
was shown to be solved with no gap. We start by showing the conditions on (QOP) to
produce exact solutions.

We rewrite (QOP) of (1) as follows:

(3) minimize  (z¢; )7 My (zo; )
subject to  (z;2)T M;(zo;2) <0 (1 <i<m), zo =1,
where

T
Yis  4;
M; = L.
' ( i, Qz )
In addition to (3), the following condition is imposed.

(i) All off-diagonal elements of M; (0 < i < m) are nonpositive.
The additional condition (i) enables us to reach the following theorem.

Theorem 2.1. [8] Let X* be an optimal solution of the SDP relazation (2). Then
v X0
VAT
VXin

is an optimal solution of the QOP problem (3).

(£0;) ==

The condition (i) seems very restrictive, but there exists a way to expand the class
of @); that satisfies the condition (i). The condition (i) can be interpreted as

(i’) There exists an (eg,ey,-..,e,)T € R*" such that
eo =1, e; € {-1,1} (j =1,2,...,n),
[M;)kjene; S0(0<k<ji<n, 0<i<m).
Then, the variable z; by —z; can be replace accordingly to make condition (i) hold.

Next, we describe conditions imposed on (QOP) to be solved by SOCP exactly. We
may assume the following conditions.

(i1) Each Q; is a diagonal matrix (¢ =0,1,2,...,m)..
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(iii) All the elements of vectors

(4) 40,91, 92, - - qm

are nonpositive.

Under the condition (ii), we can reformulate the relaxation (2) as an SOCP.

minimize Qg e {Z’ +2¢f'x
(5) subject to Q,-OX_+2qiTx+'y,-§0(i=1,2,...,m),
x? <Xj; (1=12,...,n).

Suppose that (iii) holds in addition to (ii). Let (z*, X*) be an optimal solution of the
SOCP (5). Then, similar to the proof of the last theorem, & = (\/X}{, v/ X30y -+ VXin)T
is an optimal solution of (1).

Note that condition (iii) can be relaxed by

(iii)> For every j = 1,2,...,n, all the jth elements of (4) are either nonnegative or
nonpositive,
since we can replace the variable z; by —z; and [g;]; by —[¢]; (¢ = 0,1,2,...,m),

respectively, in (1) when all the jth elements in (4) are nonnegative.

3. DIAGONALIZATION OF QUADRATIC OPTIMIZATION PROBLEMS

As shown in Section 2, the quadratic optimization problem with diagonal matrix
M; (0 < i < m) satisfying (ii) can be solved by SDP and SOCP. In other words,
diagonalization of (QOP) may provide a tool to find near exact solutions. We first
show that the quadratic optimization problem (1) is diagonalized by introducing new
variables, and then solved by SDP or SOCP. The resulting formulation is expected to
induce better solutions in terms of objective values.

Let @); be diagonalized as @); = PiDiPiT, where F; is the orthogonal matrix and D;
is the diagonal matrix. Then, (1) can be written as

(©) z* := minimize zTPyDoPTz +2¢}z
subject to zTP,D;PIz+2¢fz +v; <0, (i = 1,...,m).

Let y* = Pz (0 <i <m). Then (6) is transformed into
(DQOP) minimize 3°” Doy° + 24T Pyy°

(7) subject to yiTDiyi + Zq?}%yi +7 <0, (:=1,..,m).
Py'= Pyl (0<i<j<m).
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If (7) is solved by SDP or SOCP to obtain a solution, the condition (ii) needs to be
satisfied. For each i (0 <4 < m), consider an (n x n) diagonal matrix

€1
Ei = . 3
€n

where e; =1or — 1, j=1,...,n. If (g7 B;); is positive, then e; in E; is determined
as —1. Otherwise, e; in E; becomes 1. With the E; for i = 0,1...,m, we have g;FPiEi
satisfying (ii). Note that F;E; = I. Let E;y* = y'. It follows that g} Py’ = gF P.E;y',
and gZTPiEi is a vector with nonpositive elements.

(DQOP) now can be transformed to the following form which satisfies the conditions

(i) and (ii).

(DQOP’) minimize y°7 Doy? + 2¢7 Py Epy"
subject to yiTDi_yi + 2qiTP_,~E1-yi +7<0,i=1,..,m.
PEy' = PiEy (0<i<j<m).

Notice that (DQOP’) contains equality constraints as P E;y* = P;E;y’. It should be
noted that (3) satisfying the condition (ii) does not involve equality constraints. In
order to obtain exact solutions using the formulation of (3), equality constraints are to
be absent. As in (DQOP’), if the equality constraints are obtained during the process
of transformation, the equality constraints are needed, furthermore can be relaxed to
inequality constraints. Then the resulting problem is a relaxed problem of (3) and the
solutions from (DQOP’) are approximate solutions than accurate solutions. We discuss
this issue in Section 4 when numerical experiments are explained. .

Let y = [PoEoy’, PLE1y',...,PhE,y™]. We consider an (m + 1)n x (m + 1)n
diagonal matrix M; that includes only D; in its i-th block diagonal element (0 < ¢ < m).

T O - e e el
)

M;=|:% - D

' o

(0]

Let gq; = [0,0,¢;,0,0], where 0 is an 1 x n zero vector. Then,

(DQOPV) minimize yTMoy +2qly
(8) subject to yTMi_y + 2qiTy.+ 7% <0,i=1,..,m.
P Ey' = PjE;y’ (0<i<j<m).
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The matrices M; of the problem (DQOPV) are diagonal, and the (DQOPV) can be
solved by SDP and SOCP to obtain an approximate solution as described in Section
2.1. A drawback of this approach is the increased number of variables. If (DQOPV) is
solved by SDP relaxation, the size of the variable matrix is (14+n+mn) x (1+n+mn).
However, we can see that the matrix is very sparse.

The SDP relaxation of (8) is formulated as follows. Let us introduce the following
matrix notation:

T
- Yo q;
M; = ;
' [ q M; |
and Y =(1;y),
_ 1 0]
Mm+1 = l: 00 ]
Using (P;Ey' )y = (i1 Biny™™ e (1<k<n, 0<i<m-1),
[0 0 (PE)k/2 —(P1Eia)e/2 O ]
0 0o -.-
_ (PE:); /2 0
Moyi14ik = —(Pi1Ei)T/2 0
0 O
L . O -

where 1 < ik < mn. The problem now can be rewritten as

minimize MgyeY
subject to M;eY <0 (i=1,2,...,m),
(9) Y -0,
Mm-‘rl = ]-a

The SOCP relaxation of (8) is formulated as follows.

minimize  y? Moy + 2q§y
subject to y? My +2¢Fy+v <0 (i=12,...,m),
PEy' = P;E;y! for (0 <i<j <m).

Let 2; =y%, j=1,...,mn+n.

minimize  diag(M)Tz + 2¢ty
subject to  diag(M;)Tz +2qTy +v <0 (i=1,2,...,m),

PEy = P Eiay™ (0<i<m-—1).

(10)
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n the number of variables

m the number of quadratic inequality constraints
my the number of linear constraints

#A the number of negative eigenvalues of @,

SDP the SDP relaxation (2)

DSDP | the diagonalized SDP relaxation (9)

DSOCP | the diagonalized SOCP relaxation (10)

obj.val. | the value of objective function obtained

cpu the cpu time in seconds

it. the number of iterations that the corresponding relaxation takes

TABLE 1. Notation

Note that (10) has the equality constraints produced by transformation to a diagonal
form. We can relax the equality constrains to the inequality constraints as follows.

(DSOCP) minimize  diag(M)Tz + 2q8'y

subject to diag(M;)Tz+2¢Ty +7: <0 (i =1,2,...,m),
y? < Zj (.7 = 152”n(m+ 1))7
PEy' < P By (0<i<m—1).

The number of variables in (DSOCP) is 2(mn+n). Recall that the number of variables
in (SDP) is (n +1)%. If m = Jn, the number of the variables for the problems are the
same. As m increase, the number of variables in (DSOCP) increases. Diagonalization
of the matrix @;(0 < ¢ < m) has implemented to have similar formulation in Theorem
2.1, where the exact solutions can be obtained. (DSDP) and (DSOCP) may not provide
exact solutions because of the equality constraints, however, as we make the formulation
of (QOP) closer to that of (3) with the condition (ii), (DSDP) and (DSOCP) can give
a better approximate solution than SDP relaxation (2), which we show with numerical
experiments in the following section.

(11)

4. NUMERICAL EXPERIMENTS

We present computational results on the SDP relaxation (2), the diagonalized SDP
relaxation (9) and the diagonalized SOCP relaxation (10). All the computation was
implemented using a MATLAB toolbox, SeDuMi Version 1.03 [15] on Sun Enterprise
4500 (400MHz CPU with 6 GB memory). We use the notation described in Table 1 in
the discussion of computational results.

The test problems in our numerical experiments consists of Box constraint QOPs
in (1). That is, in addition to the constraints in QOPs, we added the box constraint
of -1 <z; <1(j=1,2,...,n) to have a bounded feasible region for the QOP (1).
In this case, Cy is the region represented by the box constraint. Random numbers
from a uniform distribution on the interval (—1.0,0.0) are assigned to the real number
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vp and each component of the vector g, (p = 0,1,2,...,m). The random number
generator in MATLAB was also used to create elements in Q, (p = 0,1,...,m). The
convexity of each (), was varied to test stability of the proposed method. The number
of negative eigenvalues of each (), determines the convexity of the objective function
and constraints. When we generate QOPs, we give the number of negative eigenvalues
for each @), as input, so that the resulting problems have the degree of convexity that
we want.

To create Qp, we first generate Dy, = diag[1, Ao, ..., A\;] with a predetermined number
of negative/positive diagonal entries, where each \; denotes a random number uniformly
distributed either in the interval € (0.0,1.0) if A; > 0 or in the interval € (—1.0,0.0) if
Ai <0 (i=2,...,n). An orthogonal matrix P, is generated by taking the orthogonal
matrix from schur decomposition of an n X n matrix, whose element is a random number
in the interval (0.0,1.0). Finally we generate each Q, € S™ such that

Qp= P,,DpPpT i

This construction is aimed to have £ = 0 all the time as an interior feasible solution of
the QOP (1) since v, <0 (p=1,2,...,m).

The numerical results are obtained by comparing (2), (9) and (10). The motivation
for this setting of the numerical experiments is to see whether better approximate
solutions can be attained using one of the three relaxations of (QOP), and compare
their numerical efficiency in terms of cpu time. Table 2 shows the numerical results
from (2), (9) and (10), and Table 3 show the comparison between (2) and (10). Recall
that diagonalization of (QOP) into (9) and (10) increases the number of variables. As
a result, (9) involves a large number of variables and in numerical experiments, it takes
much more cpu time than (2) or (10). Therefore, for the large value of n and m as
shown in Table 3, the test results from (2) and (10) are included.

The numerical results for various n, m, and #X on each relaxation are shown in
Table 2 and Table 3. We have chosen n < 30, m < n and #A = 2,n/2,n—2 to observe
the effects on different numbers of variables and constraints, and increasing/decreasing
convexity for n in Table 2. As we increase the negative number of eigenvalues of @Q;,
the concavity of the feasible region grows. In Table 2, the numerical results from three
relaxation methods are shown for relatively small n and m. This choice of n is from
the increased number of varibles in (9) and (10). Especially, in SDP relaxation (9),
the number of varibles is (mn + n)2. Computing time for solving diagonalized SDP
relaxation (9) takes much more time compared to (2) or (10), e.g., 1944 seconds for
n = 30,m = 15 and #A = 28. Our problem is a minimization over a relaxed region,
therefore, large object values indicate better approximate solutions of (QOP). Objective
values from (DSDP) and (DSOCP) are almost similar in all cases of Table 2. The values
are the same theoretically, but diagonalization of a matrix involves errors in practice
and the resulting objective values are not exactly the same. We can see that (DSOCP)
is better than (SDP) and (DSDP) in time and objective values. Hence, we compare
(SDP) and (DSOCP) for larger n and m in Table 3.
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Since the increased number of the variables in the diagonalization depends on the
number of constraints m, the cases of m < n were tested. More precisely, the number of
variables in (2) and (10) is equal when m = in. If m > In, then more time is expected
to take for solutions of (10) than (2), though we have observed that (10) yields better
The objective values obtained from (SDP) and (DSOCP)
show that (DSOCP) provides better approximations for all n and m in the numerical
experiments. The cpu time for finding approximate solutions depends heavily on the
number of variables. In Table 3, it is shown that (DSOCP) achieve solutions in much
less time than (SDP) because the size of m is less than or equal to half of n except

objective values than (2).

n = 100 and m = 50 #X = 98, in which the problem is almost concave.

n o om F#FA SDP DSDP DSOCP

obj.val. cpu it. | obj.val cpu it. | obj.val cpu it.
20 10 2| -4244 0.6 15| -16.27 157.1 16| -16.28 0.6 13
20 10 10| -39.70 0.6 15| -10.25 130.8 14| -10.20 0.6 14
20 10 18| -50.66 0.5 12 -5.59  119.3 13 -5.54 0.6 14
30 10 2 -99.03 1.3 14| -44.04 719.5 19| -43.56 1.1 15
30 10 15| -79.87 1.6 14| -37.31 653.3 18| -36.83 1.1 15
30 10 28| -45.06" 1.3 14| -26.61 593.5 16| -26.59 1.0 14
30 15 2 -65.01 2.0 19| -45.71 2141.1 17| -45.65 1.6 14
30 15 15| -54.29 1.7 16| -35.77 1841.8 16| -35.71 2.0 16
30 15 28| -57.30 2.3 19| -26.26 1944.0 17| -25.93 1.7 15

TABLE 2. Numerical results from SDP, DSDP and DSOCP

n om F# sSDhp DSOCP

obj.val. cpu it. | obj.val. cpu it.
100 10 2| -227.02 373 23| -61.75 2.3 14
100 10 50 | -239.64 32.7 20| -38.86 2.7 16
100 10 98| -309.36 31.7 19| -11.72 2.3 15
100 40 2| -273.09 894 22| -62.83 67.8 17
100 40 50 || -297.76 88.6 23| -34.10 71.8 17
100 40 98 || -262.75 103.2 26| -11.74 10.7 16
100 50 2| -216.17 156.7 33| -11.63 1458 17
100 50 98 | -225.15 93.2 20| -61.80 126.6 15
150 50 2 |l -391.88 410.2 27| -100.33 223.5 16
150 50 75 -389.35 472.6 31| -56.17 248.8 17
150 50 148 || -434.30 499.5 32| -142.81 276.5 17

TABLE 3. Numerical results on SDP and DSOCP
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5. CONCLUDING DISCUSSIONS

We have discussed finding approximate solutions of general quadratic problems in
the form of (1). The diagonalized second order cone programming relaxation has been
proposed for improving the effectiveness and efliciency for solving the problem based
on Theorem 2.1, which states the conditions for solving the quadratic optimization
problem with no gap. Though the proposed formulation requires the increased number

of variables, the proposed method works well in terms of time and objective values

for m < —%—n In most of the test problems that we listed in the previous section,

the diagonalized SOCP relaxation has attained much better lower bounds than the
lift-and-project SDP relaxation with smaller amount of cpu time.
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