• Title/Summary/Keyword: Diagonalization

Search Result 70, Processing Time 0.027 seconds

Block diagonalization precoding scheme for a multiuser amplify-and-forward MIMO relay system (다중 사용자 증폭재전송 MIMO 중계 시스템을 위한 블록 대각화 기반 프리코딩 기법)

  • Lee, Panhyung;Lee, Jae Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.102-103
    • /
    • 2012
  • 본 논문에서는 다중 사용자 증폭재전송(amplify-and-forward) MIMO 중계 시스템을 위한 프리코딩(precoding) 기법을 제안한다. 제안된 프리코딩 기법에서는 블록 대각화(block diagonalization)를 통해 사용자간 간섭(inter-user interfereence)을 제거하고 기지국과 중계기에서의 전송전력(transmit power) 제한을 만족하면서 사용자 데이터 전송률(data rate)의 합이 최대화 되도록 한다. 모의실험결과를 통해 제안된 기법이 기존 기법에 비해 더 높은 사용자 데이터 전송률의 합을 달성함을 보이고 있다.

  • PDF

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.

A Poof of Utkin's Theorem for SI Uncertain Nonlinear Systems (단일입력 불확실 비선형 시스템에 대한 Utkin 정리의 증명)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1612-1619
    • /
    • 2017
  • In this note, a complete proof of Utkin's theorem is presented for SI(single input) uncertain nonlinear systems. The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and control input transformations, the equation of the sliding mode i.e., the sliding surface is invariant, which is proved completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of the two nonlinear transformation methods, the same results can be obtained.

Interference Management with Block Diagonalization for Macro/Femto Coexisting Networks

  • Jang, Uk;Cho, Kee-Seong;Ryu, Won;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.297-307
    • /
    • 2012
  • A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co-channel interference. Utilizing the advantage of a multiple-input multiple-output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single-cell block diagonalization, in a cooperative manner. Since interference from clustered-FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.

A Review of Fixed-Complexity Vector Perturbation for MU-MIMO

  • Mohaisen, Manar
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.354-369
    • /
    • 2015
  • Recently, there has been an increasing demand of high data rates services, where several multiuser multiple-input multiple-output (MU-MIMO) techniques were introduced to meet these demands. Among these techniques, vector perturbation combined with linear precoding techniques, such as zero-forcing and minimum mean-square error, have been proven to be efficient in reducing the transmit power and hence, perform close to the optimum algorithm. In this paper, we review several fixed-complexity vector perturbation techniques and investigate their performance under both perfect and imperfect channel knowledge at the transmitter. Also, we investigate the combination of block diagonalization with vector perturbation outline its merits.

A Poof of Utkin's Theorem for the SI Uncertain Integral linear Case (Utkin 정리의 단일입력 불확실 적분 선형 시스템에 대한 증명)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.843-847
    • /
    • 2011
  • In this note, a proof of Utkin's theorem is presented for the SI(Single Input) uncertain integral linear case. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods are proved clearly and comparatively for SI uncertain integral linear systems. With respect to the sliding surface transformation, the equation of the sliding mode, the sliding surface is invariant. Both the applied control inputs have the same gains. By means of the two transformation methods the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Locally Linear Embedding for Face Recognition with Simultaneous Diagonalization (얼굴 인식을 위한 연립 대각화와 국부 선형 임베딩)

  • Kim, Eun-Sol;Noh, Yung-Kyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.235-241
    • /
    • 2015
  • Locally linear embedding (LLE) [1] is a type of manifold algorithms, which preserves inner product value between high-dimensional data when embedding the high-dimensional data to low-dimensional space. LLE closely embeds data points on the same subspace in low-dimensional space, because the data points have significant inner product values. On the other hand, if the data points are located orthogonal to each other, these are separately embedded in low-dimensional space, even though they are in close proximity to each other in high-dimensional space. Meanwhile, it is well known that the facial images of the same person under varying illumination lie in a low-dimensional linear subspace [2]. In this study, we suggest an improved LLE method for face recognition problem. The method maximizes the characteristic of LLE, which embeds the data points totally separately when they are located orthogonal to each other. To accomplish this, all of the subspaces made by each class are forced to locate orthogonally. To make all of the subspaces orthogonal, the simultaneous Diagonalization (SD) technique was applied. From experimental results, the suggested method is shown to dramatically improve the embedding results and classification performance.

Hierarchical optimal control of decentralized discrete-time system for process automation (분산 이산시간 시스템의 공정 자동화를 위한 계층적 최적제어)

  • 김현기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.209-213
    • /
    • 1987
  • This paper presents decentralized discrete-time system which is optimized by hierarchical control for process automation via the extended interaction balance method. This proposed method can control general matrix which input matrix is not block diagonalization. Also, this paper shows convergence condition of proposed method.

  • PDF

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

MIMO Channel Diagonalization: Linear Detection ZF, MMSE (MIMO 채널 대각화: 선형 검출 ZF, MMSE)

  • Yang, Jae Seung;Shin, Tae Chol;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Compared to the MIMO system using the spatial multiplexing methods and the MIMO system using the diversity scheme achieved a high rate, but the lower the diversity gain to improve the data transmission reliability should separate the spatial stream at the MIMO receiver. In this paper, we compared Channel capacity detection methods with the Lattice code, the 3-user interference channel and linear channel interference detection methods ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) detection methods. The channel is a Diagonal channel. In other words, Diagonal channel is confirmed by the inverse matrix satisfies the properties of Jacket are element-wise inverse to $[H]_N[H]_N^{-1}=[I]_N$.