• Title/Summary/Keyword: Diagonal Model

Search Result 254, Processing Time 0.022 seconds

In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach

  • De Domenico, Dario;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.423-442
    • /
    • 2018
  • In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.

A Study on the Style Emergence of Liujin Dougong (류금두공의 양식적 형성과정 연구)

  • Baik, So-Hun
    • Journal of architectural history
    • /
    • v.26 no.3
    • /
    • pp.19-30
    • /
    • 2017
  • This paper studies the style emergence of Liujin Dougong in the ancient Chinese architecture. Dougong is the bracket set of the ancient Chinese wood structural architecture, and Liujin Dougong is one of the late styles of Chinese Dougong. It emerged in the period of the Ming Dynasty and has been installed in imperial palaces and imperial temples till the late period of the Qing Dynasty. Through the long term field survey and documental investigation, this research found out the some prototypes of Liujin Dougong among the earlier Xia-ang style Dougongs in the Song and Yuan Dynasty architectures. The symptom of style change appeared in the bracket composition. In the beginning, because Shuatou, the horizontal member just on Xia-ang was needed to be fixed to the inner main structure system, it was changed to the diagonal member and replaced Xia-ang. It brought continuous changes, the other horizontal members of Dougong also began to change to the diagonal form. And in accordance with these compositional changes of Dougong members, the decoration of inner parts also began to change. This paper analyzed every step of the compositional and decorative changes from Xia-ang Dougong style to Liujin Dougong style. In the addition, it also proposed the typical model of Qing style Liujin Dougong of which tail end is not placed on the beam and is just placed under the purlin, based on the its own research and analysis.

A Study on the Choice of Dependent Variables of Momentum Equations in the General Curvilinear Coordinate (일반곡률좌표계 운동량방정식의 종속변수 선정에 관한 연구)

  • Kim, Tak-Su;Kim, Won-Gap;Kim, Cheol-Su;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1500-1508
    • /
    • 2001
  • This paper represents the importance of dependent variables in non-orthogonal curvilinear coordinates just as the importance of those variables of convective scheme and turbulence model in computational fluid dynamics. Each of Cartesian, physical covariant and physical contravariant velocity components was tested as the dependent variables of momentum equations in the staggered grid system. In the flow past a circular cylinder, the results were computed to use each of three variables and compared to experimental data. In the skewed driven cavity flow, the results were computed to check the grid dependency of the variables. The results used in Cartesian and physical contravariant components of velocity in cylinder flow show the nearly same accuracy. In the case of Cartesian and contravariant component, the same number of vortex was predicted in the skewed driven cavity flow. Vortex strength of Cartesian component case has about 30% lower value than that of the other two cases.

Multivariate GARCH and Its Application to Bivariate Time Series

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.915-925
    • /
    • 2007
  • Multivariate GARCH has been useful to model dynamic relationships between volatilities arising from each component series of multivariate time series. Methodologies including EWMA(Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model) models are comparatively reviewed for bivariate time series. In addition, these models are applied to evaluate VaR(Value at Risk) and to construct joint prediction region. To illustrate, bivariate stock prices data consisting of Samsung Electronics and LG Electronics are analysed.

  • PDF

Nonlinear analysis on concrete-filled rectangular tubular composite columns

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.577-587
    • /
    • 2000
  • A 3D nonlinear finite element computation model is presented in order to analyze the concrete filled rectangular tubular (CFRT) composite structures. The concrete material model is based on a hypo-elastic orthotropic approach while the elasto-plastic hardening model is employed for steel element. The comparisons between experimental and analytical results show that the proposed model is a relatively simple and effective one. The analytical results show that the capacity of inner concrete of CFRT column mainly depends on the two diagonal zones, and the confining effect of CFRT section is mainly concentrated on the corner zones. At the ultimate state, the side concrete along the section cracks seriously, and the corner concrete softens with the increase of compressive strains until failure.

Development of Grid Based Distributed Rainfall-Runoff Model with Finite Volume Method (유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Jin-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.895-905
    • /
    • 2008
  • To analyze hydrologic processes in a watershed requires both various geographical data and hydrological time series data. Recently, not only geographical data such as DEM(Digital Elevation Model) and hydrologic thematic map but also hydrological time series from numerical weather prediction and rainfall radar have been provided as grid data, and there are studies on hydrologic analysis using these grid data. In this study, GRM(Grid based Rainfall-runoff Model) which is physically-based distributed rainfall-runoff model has been developed to simulate short term rainfall-runoff process effectively using these grid data. Kinematic wave equation is used to simulate overland flow and channel flow, and Green-Ampt model is used to simulate infiltration process. Governing equation is discretized by finite volume method. TDMA(TriDiagonal Matrix Algorithm) is applied to solve systems of linear equations, and Newton-Raphson iteration method is applied to solve non-linear term. Developed model was applied to simplified hypothetical watersheds to examine model reasonability with the results from $Vflo^{TM}$. It was applied to Wicheon watershed for verification, and the applicability to real site was examined, and simulation results showed good agreement with measured hydrographs.

Strength Prediction of Corbels Using Strut-and-Tie Model Analysis

  • Kassem, Wael
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.255-266
    • /
    • 2015
  • A strut-and-tie based method intended for determining the load-carrying capacity of reinforced concrete (RC) corbels is presented in this paper. In addition to the normal strut-and-tie force equilibrium requirements, the proposed model is based on secant stiffness formulation, incorporating strain compatibility and constitutive laws of cracked RC. The proposed method evaluates the load-carrying capacity as limited by the failure modes associated with nodal crushing, yielding of the longitudinal principal reinforcement, as well as crushing or splitting of the diagonal strut. Load-carrying capacity predictions obtained from the proposed analysis method are in a better agreement with corbel test results of a comprehensive database, comprising 455 test results, compiled from the available literature, than other existing models for corbels. This method is illustrated to provide more accurate estimates of behaviour and capacity than the shear-friction based approach implemented by the ACI 318-11, the strut-and-tie provisions in different codes (American, Australian, Canadian, Eurocode and New Zealand).

Effective Shear Strength of Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근의 유효전단강도)

  • 하태훈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.271-276
    • /
    • 2002
  • Existing design equations generally overestimate the shear strength of the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the inappropriate application of the classical truss model to the circular section, which is different in shear-resisting component from the rectangular section. The present study introduces a new model considering the starting point of the diagonal crack, the number of transverse reinforcing bars crossing the crack and the effective strength component of the transverse resistance. This model leads to a simple design equation which is derived using the linear regression method and is in agreement with the lower bound of exact strength curve.

  • PDF

A Study on the Similitude of Member Behavior for Small-Scale Modeling of Reinforced Concrete Structure (철근콘크리트 축소모델의 부재거동 상사성에 관한 연구)

  • 장진혁;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.187-192
    • /
    • 1995
  • Four types of experiments were performed to check the similitude of member behavior between prototype and 1/10 scale models:(1) Test of slender columns with P- effect, (2)Test of short columns with and without confinement steel, (3)Test of simple beams without stirrups, and (4)T-beam test. Based on the results of experiments, the conclusions were made as follows : (1) The P- effect of slender columns can be almost exactly represented by 1/10 acale model. (2)The effect of confinement on short columns by the hoop steel can also roughly simulated by 1/10 scale model. (3)The failure modes of simple beams models were the yielding of tension steel followed by large diagonal tension cracking+compressive concrete failure. (4)The behaviors of prototype and 1/10 scale model in T-beams appear very similar.

  • PDF

Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames

  • Zahrai, Seyed Mehdi;Jalali, Meysam
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.1-21
    • /
    • 2014
  • Knee Braced Frame (KBF) is a special form of ductile eccentrically braced frame having a diagonal brace connected to a knee element, as a hysteretic damper, instead of beam-column joint. This paper first presents an experimental investigation on cyclic performance of two knee braced single span one-story frame specimens. The general test arrangement, specimen details, and most relevant results (failure modes and hysteretic curves) are explained. Some indexes to assess the seismic performance of KBFs, including ductility; response reduction factor and energy dissipation capabilities are also subsequently discussed. Experimental results indicate that the maximum equivalent damping ratios achieved by test frames are 21.8 and 23% for the specimens, prior to failure. Finally, a simplified analytical model is derived to predict the bilinear behavior of the KBFs. Acceptable conformity between analytical and experimental results proves the accuracy of the proposed model.