• Title/Summary/Keyword: Diagnostic Prediction

Search Result 212, Processing Time 0.023 seconds

Comparison of Diagnostic Accuracy and Prediction Rate for between two Syndrome Differentiation Diagnosis Models (중풍 변증 모델에 의한 진단 정확률과 예측률 비교)

  • Kang, Byoung-Kab;Cha, Min-Ho;Lee, Jung-Sup;Kim, No-Soo;Choi, Sun-Mi;Oh, Dal-Seok;Kim, So-Yeon;Ko, Mi-Mi;Kim, Jeong-Cheol;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.938-941
    • /
    • 2009
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. In the present study we tried to develop the statistical diagnostic tool discriminating the subtypes of oriental medicine diagnostic system, syndrome differentiation (SD). Discriminant analysis was carried out using clinical data collected from 1,478 stroke patients with the same subtypes diagnosed identically by two clinical experts with more than 3 year experiences. Numerical discriminant models were constructed using important 61 symptom and syndrome indices. Diagnostic accuracy and prediction rate of 5 SD subtypes: The overall diagnostic accuracy of 5 SD subtypes using 61 indices was 74.22%. According to subtypes, the diagnostic accuracy of "phlegm-dampness" was highest (82.84%), and followed by "qi-deficiency", "fire/heat", "static blood", and "yin-deficiency". On the other hand, the overall prediction rate was 67.12% and that of qi-deficiency was highest (73.75%). Diagnostic accuracy and prediction rate of 4 SD subtypes: The overall diagnostic accuracy and prediction rate of 4 SD subtypes except "static blood" were 75.06% and 71.63%, respectively. According to subtypes, the diagnostic accuracy and prediction rate was highest in the "phlegm-dampness" (82.84%) and qi-deficiency (81.69%), respectively. The statistical discriminant model of constructed using 4 SD subtypes, and 61 indices can be used in the field of oriental medicine contributing to the objectification of SD.

Comparative Analysis of Diagnostic Prediction Algorithm Performance for Blood Cancer Factor Validation and Classification (혈액암 인자 유효성 검증과 분류를 위한 진단 예측 알고리즘 성능 비교 분석)

  • Jeong, Jae-Seung;Ju, Hyunsu;Cho, Chi-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Artificial intelligence application in digital health care has been increasing with its development of artificial intelligence. The convergence of the healthcare industry and information and communication technology makes the diagnosis of diseases more simple and comprehensible. From the perspective of medical services, its practice as an initial test and a reference indicator may become widely applicable. Therefore, analyzing the factors that are the basis for existing diagnosis protocols also helps suggest directions using artificial intelligence beyond previous regression and statistical analyses. This paper conducts essential diagnostic prediction learning based on the analysis of blood cancer factors reported previously. Blood cancer diagnosis predictions based on artificial intelligence contribute to successfully achieve more than 90% accuracy and validation of blood cancer factors as an alternative auxiliary approach.

Discriminant Modeling for Pattern Identification Using the Korean Standard PI for Stroke-III (한국형 중풍변증 표준 III을 이용한 변증진단 판별모형)

  • Kang, Byoung-Kab;Ko, Mi-Mi;Lee, Ju-Ah;Park, Tae-Yong;Park, Yong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1113-1118
    • /
    • 2011
  • In this paper, when a physician make a diagnosis of the pattern identification (PI) in Korean stroke patients, the development methods of the PI classification function is considered by diagnostic questionnaire of the PI for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PI subtypes diagnosed by two physicians with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PI using Korean Stroke Syndrome Differentiation Standard was consist of the 44 items (Fire heat(19), Qi deficiency(11), Yin deficiency(7), Dampness-phlegm(7)). Using the 44 items, we took diagnostic and prediction accuracy rate through of discriminant model. The overall diagnostic and prediction accuracy rate of the PI subtypes for discriminant model was 74.37%, 70.88% respectively.

Development of Diagnostic Expert System for Rotating Machinery Failure Diagnosis (볼베어링으로 지지된 회전축의 이상상태 진단을 위한 진단전문가 시스템의 개발)

  • 유송민;김영진;박상신
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.218-226
    • /
    • 1998
  • In this study a neural network based expert system designed to diagnose operating status of a rotating spindle system supported by ball bearings was introduced. In order to facilitate practical failure situations, five exemplary abnormal status was fabricated. Out of several possible data source locations, seven most effective spots were chosen and proven to be the most successful in predicting single and multiple abnormalities. Increased signal strength was measured around where abnormality was embedded. Signal mea-surement locations producing high prediction rate were also classified. Even though multiple abnormalities were hard to be decoupled into their individual causes, proposed diagnostic system was somewhat effective in predicting such cases under certain combination of sensor locations. Among several abnormal operating conditions, highest prediction rate can be expected when signal is spoiled by the failure or damage in outer race. Proposed diagnostic system was again proven to be the most effective system in analyzing and ranking the importance of data sources.

  • PDF

Machine Learning-Based Prediction of COVID-19 Severity and Progression to Critical Illness Using CT Imaging and Clinical Data

  • Subhanik Purkayastha;Yanhe Xiao;Zhicheng Jiao;Rujapa Thepumnoeysuk;Kasey Halsey;Jing Wu;Thi My Linh Tran;Ben Hsieh;Ji Whae Choi;Dongcui Wang;Martin Vallieres;Robin Wang;Scott Collins;Xue Feng;Michael Feldman;Paul J. Zhang;Michael Atalay;Ronnie Sebro;Li Yang;Yong Fan;Wei-hua Liao;Harrison X. Bai
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1213-1224
    • /
    • 2021
  • Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.

Predictions of Local Circulation and Dispersion with Microscale Numerical Model (수치모의를 통한 미세규모 순환과 확산에 대한 예측)

  • 안광득;이용희;장동언;조천호
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.147-158
    • /
    • 2003
  • The prediction of wind field is very important fact in the radioactive and chemical warfare. In spite of advanced numerical weather prediction modelling and computing technology, the high resolution prediction of wind field is limited by the very high integration costs. In this study we coupled the mesoscale numerical model and microscale diagnostic numerical model with minimized integration costs. This coupled model has not only the ability of prediction of high resolution wind field including complex building but also microscale pollutant diffusion fields. For military operation this system can help making a practical and cost-effective decision in a battle field.

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Quantitative Evaluation on Prediction of Realization by Subjects in Diagnostic Fields of Traditional Korean Medicine (한의학 진단 분야의 미래 예측 실현과제에 대한 정량적 평가)

  • Kim, Ji-Hye;Kim, Keun-Ho;Shin, Hyeun-Kyoo
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.1
    • /
    • pp.11-24
    • /
    • 2014
  • Objectives The aim of this study is to contribute to the establishment of the Traditional Korean Medicine (TKM) policies in future, which is through the assessment to predict the realization by diagnostic subjects. Methods First, we evaluated 8 subjects that were deduced by professionals in 1996 regarding whether or not to be realized in 2013. Second, the governmental and private research projects, reports, articles, domestic patents and products were reviewed and investigated. Third, the Subjects in domestic fields of TKM were investigated on the followings: importance, time of realization, domestic Research and Development level, principal agents and methods for the realization, and hindrance factor on the realization. Results Of the 8 forecasting subjects, one subject was realized, two subjects were partly realized and five subjects were unrealized. Thus, their realization rate was 12.5%. The realized subject is the 'Standard naming of the TKM diagnosis'. Conclusion Continuous researches are necessary to realize the TKM subjects and moreover, professionals should predict new feasible TKM subjects, based on this study.

Discriminant Model V for Syndrome Differentiation Diagnosis based on Sex in Stroke Patients (성별을 고려한 중풍 변증진단 판별모형개발(V))

  • Kang, Byoung-Kab;Lee, Jung-Sup;Ko, Mi-Mi;Kwon, Se-Hyug;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.138-143
    • /
    • 2011
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. As a part of researches for standardization and objectification of differentiation of syndromes for stroke, in this present study, we tried to develop the statistical diagnostic tool discriminating the 4 subtypes of syndrome differentiation using the essential indices considering the sex. Discriminant analysis was carried out using clinical data collected from 1,448 stroke patients who was identically diagnosed for the syndrome differentiation subtypes diagnosed by two clinical experts with more than 3 year experiences. Empirical discriminant model(V) for different sex was constructed using 61 significant symptoms and sign indices selected by stepwise selection. We comparison. We make comparison a between discriminant model(V) and discriminant model(IV) using 33 significant symptoms and sign indices selected by stepwise selection. Development of statistical diagnostic tool discriminating 4 subtypes by sex : The discriminant model with the 24 significant indices in women and the 19 significant indices in men was developed for discriminating the 4 subtypes of syndrome differentiation including phlegm-dampness, qi-deficiency, yin-deficiency and fire-heat. Diagnostic accuracy and prediction rate of syndrome differentiation by sex : The overall diagnostic accuracy and prediction rate of 4 syndrome differentiation subtypes using 24 symptom and sign indices was 74.63%(403/540) and 68.46%(89/130) in women, 19 symptom and sign indices was 72.05%(446/619) and 70.44%(112/159) in men. These results are almost same as those of that the overall diagnostic accuracy(73.68%) and prediction rate(70.59%) are analyzed by the discriminant model(IV) using 33 symptom and sign indices selected by stepwise selection. Considering sex, the statistical discriminant model(V) with significant 24 symptom and sign indices in women and 19 symptom and sign indices in men, instead of 33 indices would be used in the field of oriental medicine contributing to the objectification of syndrome differentiation with parsimony rule.