• 제목/요약/키워드: Diabetic mouse

검색결과 134건 처리시간 0.022초

Pharmacological Effects of KR60886, A New β3 Adrenoceptor Agonist

  • Lee, Sang-Suk;Yang, Sung-Don;Ha, Jae-Du;Choi, Joong-Kwon;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • 제12권4호
    • /
    • pp.215-220
    • /
    • 2004
  • In an attempt to develop new anti-diabetic agents, a series of aryloxypropanolamine derivatives was synthesized to serve as ${\beta}_3$ adrenoceptor agonists. Among these derivatives, 1-{1-methyl-3-[4-(2-methyl-2H-1,2,3,4-tetrazol-5-yl)phenyl]propylamino}-3-phenoxy-2-propanol (KR60886) possessed a high affinity for the ${\beta}_3$ adrenoceptor (Ki = 28 nM) and moderate affinities for ${\beta}_1$ and ${\beta}_2$ adrenoceptors (Ki = 95 nM and 100 nM, respectively). In addition, KR60886 stimulated cAMP production with an EC$_{50}$ of 0.4 ${\mu}M$, confirming its agonistic activity for the ${\beta}_3$ adrenoceptor. In vivo activities of KR60886 were examined by using a fat-fed/streptozotocin (STZ)-treated rat model and the ob/ob mouse model. Oral administration of KR60886 (10 mg/kg) for 3 days (b.i.d.) to fat-fed/STZ-treated rats significantly lowered plasma glucose levels and reduced plasma free fatty acid concentrations. Similarly, KR60886 treatment (10 mg/kg/day for 7 d) resulted in a reduction of plasma glucose concentrations in ob/ob mice. The present study suggests that KR60886 is a potent ${\beta}_3$ receptor agonist with in vivo anti-diabetic properties.

흑삼추출물(BGE)과 금산흑삼표준화소재(GBG05-FF)의 In Vitro와 In Vivo상에서의 항당뇨효과 (The Antidiabetic Effects of Black Ginseng Extract(BGE)and Geumsan Black Ginseng 05-FF(GBG05-FF) on In Vitro and In Vivo Assay)

  • 서윤수;손미례;공룡;강옥화;주전;김도연;박종대;권동렬
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.321-326
    • /
    • 2015
  • The prevalence of diabetes mellitus continues to rise alarmingly because of industrialization of society. The aim of this study was to investigate the antidiabetic effects of black ginseng extract (BGE) which was performed panax ginseng. First we examined the inhibitory effects of BGE on ${\alpha}$-glucosidase. But there was no practical effects in our observations. We, also, investigate the effects of BGE on glucose uptake of skeletal muscle using 2-NBDG in $C_2C_{12}$ myotube. BGE significantly improved the glucose uptake considered as a lowered blood glucose level. Effects of GBG05-FF on fasting blood glucose and glycated hemoglobin (HbA1c) were investigated in streptozotocin (STZ)-induced diabetic mouse. After injection of STZ, fasting blood glucose and glycated hemoglobin rapidly increased. But STZ-induced diabetic mouse treated with GBG05-FF significantly reduced the level of fasting blood glucose and HbA1c. This results showed that supplementation of BGE improve the diabetic parameters and BGE have a potentiality as a functional food for Diabetes mellitus.

Effects of 4-hexylresorcinol on facial skeletal development in growing rats: Considerations for diabetes

  • Hannah Jeong;Jwa-Young Kim;Xiangguo Che;Je-Yong Choi;Insan Jang;Seong-Gon Kim
    • 대한치과교정학회지
    • /
    • 제53권6호
    • /
    • pp.393-401
    • /
    • 2023
  • Objective: To investigate the long-term effects of 4-hexylresorcinol (4HR) on facial skeletal growth in growing male rats, with a focus on diabetic animal models. Methods: Forty male rats were used. Of them, type 1 diabetes mellitus was induced in 20 animals by administering 40 mg/kg streptozotocin (STZ), and they were assigned to either the STZ or 4HR-injected group (STZ/4HR group). The remaining 20 healthy rats were divided into control and 4HR groups. We administered 4HR subcutaneously at a weekly dose of 10 mg/kg until the rats were euthanized. At 16 weeks of age, whole blood was collected, and microcomputed tomography of the skull and femur was performed. Results: All craniofacial linear measurements were smaller in the STZ group than in the control group. The mandibular molar width was significantly smaller in the 4HR group than in the control group (P = 0.031) but larger in the STZ/4HR group than in the STZ group (P = 0.011). Among the diabetic animals, the STZ/4HR group exhibited significantly greater cortical bone thickness, bone mineral density, and bone volume than the STZ group. Serum testosterone levels were also significantly higher in the STZ/4HR group than in the STZ group. Conclusions: 4HR administration may have divergent effects on mandibular growth and bone mass in healthy and diabetic rats. In the context of diabetes, 4HR appears to have beneficial effects, potentially through the modulation of mitochondrial respiration.

Generation of Transgenic Mice Overexpression Mouse RESISTIN

  • J. R. Chun;S. J. Song;J. T. Do;K. S. Chung;Lee, H. T.
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.99-99
    • /
    • 2002
  • The hormone resistin is associated with typeII diabetes mellitus in rodent model. Resistin impairs glucose tolerance and insulin action. A new class of anti-diabetic drugs were called thiazolidinediones (TZDs) downregulates a resistin which is induced during adipocyte differentiation. But the connection between increased adiposity and resistin remains unknown. The objectives of this study was to clone a mouse resistin cDNA and to generate transgenic mice overexpressing mouse resistin gene. The 555 bp of mouse resistin was amplified from mob cDNAS by polymerase chain reaction (PCR) and cloned into pCR$\^$(R)/ 2.1 TOPO T-vector. Mouse resistin mRNA on the basis of Genbank sequence (acession no. AF323080). Then, the PCR product was cloned into pTargeT$\^$TM/ mammalian expression vector that has pCMV promoter and chimeric intron. Restriction enzyme analysis with BamH I and Not I was carried out to determine an orientation of the insert in the vector. The pCMV-mus/resistin gene was prepared from previous recombinant pTargeT$\^$TM/-mus/resistin by digestion of Bgl II, and has used for microinjection into pronuclei of one cell embryos. The microinjected embryos were transfered to pseudopregnant foster-mother. Mouse resistin expression was detected in transgenic F1 mice by Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR). Resistin gene expression mouse has heavier body weight which was measured higher level of plasma glucose than that of normal mouse. And in diet-induced experiments, the abdominal fat pads were isolated from each 24h starvation and re-feeding after fasting group mice that were assessed by RT-PCR analysis. In fasting group mice, resistin expression was higher than that of re-feeding group mice. This result suggests that the resistin gene overexpressing mice may be became to obesity and be useful as an animal disease model to be diabetes mellitus caused by insulin resistance of resistin.

  • PDF

산약의 항당뇨 특성 연구(1) - 혈당 강하 효과 - (Characteristics of Antidiabetic Effect of Dioscorea rhizoma(1) - Hypoglycemic Effect -)

  • 강동호;최상진;이태호;손미원;김선여
    • 한국식품영양학회지
    • /
    • 제21권4호
    • /
    • pp.425-429
    • /
    • 2008
  • Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 1 diabetes, or juvenile-onset diabetes, results from a cellular-mediated autoimmune destruction of the ${\beta}$-cells of the pancreas. Type 2 diabetes, or adult-onset diabetes, is a term used for individuals who have insulin resistance, a condition that makes it harder for the cells to properly use insulin, and usually have relative insulin deficiency. The diabetes causes the onset of chronic complications and diabetic neuropathy is one of the most debilitating complications. In this study, the hypoglycemic effect and the preventive effect of diabetic complications of Dioscorea rhizoma extract(DRE) were examined in rodent model. We investigated the glucose tolerance test and long term hypoglycemic effect of DRE in Type 1 streptozotocin-induced diabetic rats and Type 2 diabetic db/db mice. DRE showed a hypoglycemic effect on blood glucose levels than that of control group in Type 1 streptozotocin-induced diabetic rats and Type 2 diabetic db/db mice. On the basis of our results, we conclude that long-term use of DRE might help decrease blood glucose level and prevention of diabetes-associated complication.

Streptozotocin 당뇨유발 쥐와 db/db 마우스에서의 피브로인 가수분해물에 의한 인슐린 분비 촉진 (Stimulation of Insulin Secretion by Silk Fibroin Hydrolysate in Streptozotocin-induced Diabetic Rats and db/db Mice)

  • 박금주;홍성의;도명술;현창기
    • 생약학회지
    • /
    • 제33권1호통권128호
    • /
    • pp.21-28
    • /
    • 2002
  • Antidiabetic effects of the acid hydrolysate of silk fibroin were investigated by oral administration to animal models for diabetes mellitus, Fibroin protein was extracted from cocoon and digested to peptides of low-molecular weight range (mainly below 3,000) and amino acids by acid hydrolysis, Feeding of the fibroin hydrolysate resulted in a significant recovering effect on reduction of body weight gain and a lowering effect on blood glucose gain in streptozotocin-induced diabetic Sprague Dawley rats (STZ rats) which were used as an insulin-dependent diabetic animal model. But the body weight and blood glucose level in C57BL/KsJ-db/db mice (db/db mice), an non-insulin-dependent diabetic animal model, were not changed significantly by the feeding, On the other hand, plasma leptin levels increased according to increased feeding amount of the hydrolysate in STZ rats and db/db mice in common, It was concluded from the results that the fibroin hydrolysate might stimulate the insulin secretion by recovering or activating pancreatic ${\beta}$ cells and result in the increased plasma leptin level. It was also deduced that the antidiabetic improvements in body weight and blood glucose gain in STZ were thought to be due to the increased insulin secretion, but in db/db mice of which the diabetic symptoms were caused by insulin resistance, the stimulated secretion of insulin was unlikely to be able to change body weight and blood glucose level significantly.

Ginseng total saponin modulates the changes of ${\alpha}$-actinin-4 in podocytes induced by diabetic conditions

  • Ha, Tae-Sun;Choi, Ji-Young;Park, Hye-Young;Nam, Ja-Ae;Seo, Su-Bin
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.233-238
    • /
    • 2014
  • Background: The actin cytoskeleton in podocytes is essential for the maintenance of its normal structure and function. Its disruption is a feature of podocyte foot-process effacement and is associated with proteinuria. ${\alpha}$-Actinin-4 in podocytes serves as a linker protein binding the actin filaments of the cytoskeleton. Methods: To investigate the effect of ginseng total saponin (GTS) on the pathological changes of podocyte ${\alpha}$-actinin-4 induced by diabetic conditions, we cultured mouse podocytes under normal glucose (5mM) or high glucose (HG, 30mM) conditions, with or without the addition of advanced glycosylation end products (AGE), and treated with GTS. Results: In confocal imaging, ${\alpha}$-actinin-4 colocalized with the ends of F-actin fibers in cytoplasm, but diabetic conditions disrupted F-actin fibers and concentrated ${\alpha}$-actinin-4 molecules at the peripheral cytoplasm. GTS upregulated ${\alpha}$-actinin protein in a time- and dose-dependent manner, and suppressed the receptor for AGE levels in western blotting. Diabetic conditions, including HG, AGE, and both together, decreased cellular ${\alpha}$-actinin-4 protein levels at 24 h and 48 h. Such quantitative and qualitative changes of ${\alpha}$-actinin-4 protein induced by diabetic conditions were mitigated by GTS. Conclusion: These findings imply that both HG and AGE have an influence on the distribution and amount of ${\alpha}$-actinin-4 in podocytes that can be recovered by GTS.

Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats

  • Zuyang Zhang;Tianhua Chen;Wei Liu;Jiepeng Xiong;Liangdong Jiang;Mingjiang Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.437-448
    • /
    • 2023
  • Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. In vitro, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.

Streptozotocin과 Alloxan으로 유도된 당뇨가 Mouse 신사구체에 미치는 조직학적 변화 (Histological changes on the renal glomeruli by the Streptozotocin and Alloxan-induced diabetic mouse)

  • 나현주
    • Journal of Korean Biological Nursing Science
    • /
    • 제2권1호
    • /
    • pp.20-33
    • /
    • 2000
  • The author was used for the ICR mouse and induced diabetes with the streptozotocin(50mg/kg)and alloxan(40mg/kg). After the testing and the identifying the diabetes, the histological changes of the glomerulus, blood test for the values of blood sugar, and urine test for the values of urine protein were investigated. The results are as follows : 1. The values of high blood sugar appeared from the 2 group were about $378mg/d{\ell}{\sim}709mg/d{\ell}$, in the treated groups with the streptozotocin and alloxan. The glycosuria were obviously continued from the 2 weeks to the 12 weeks of the streptozotocin and the alloxan treated groups and the proteinuria was ${\pm}{\sim}+$ in the 4 weeks and 8 weeks of streptozotocin treated group and were + in all the 12 weeks. The ketonuria were generally negative. 2. In the view of the light microscope, there was no significant histological changes until the 8 weeks. However, in the 12 weeks group treated with the streptozotocin, the mesangial matrix of glomerulus increased Bowman's capsules adhered to each other and changed them to the crescence shapes because of increasing the exothelial cells.

  • PDF

Effect of Metformin on Cell Growth and Differentiation in Cultured Odontoblasts

  • Oh, Chang Young;Kim, Su-Gwan;Go, Dae-San;Yu, Sun-Kyoung;Kim, Tae-Hoon;Kim, Chun Sung;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.39-45
    • /
    • 2017
  • Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.