• Title/Summary/Keyword: Device-to-Device

Search Result 25,364, Processing Time 0.052 seconds

A Study on Designing a Proper External Shading Device to Diminish the Cooling Load of a Transparent Glazing Office Building (투명 유리 사무소 건물의 냉방부하 감소를 위한 적정 외부차양 배치에 관한연구)

  • Yim, Sang-Joon;Seo, Hye-Soo;Kim, Byung-Seon
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.21-26
    • /
    • 2002
  • Modem architecture represent a great capitalistic, polishing, high-technology image to the public by design. As a result, glass architecture which show 'transmittance' in desinging play a leading part, consequently a role of machine is increasing in controlling an internal environment of building. These movement look like assisting an universal standard building disregarding a each nation's climate peculiarity, if glass building is applied by a proper external shading device. the shading device has a great effect on the reduction of cooling load energy, this research to propose the proper designing scheme of the fixed external shading device. The effect of proper external shading device on the cooling load is evaluated by the numeric simulation.

Development of Portable Vibration Signal-Based Pipe Wall Thinning Inspection Device (진동신호기반 배관감육 측정시스템 개발)

  • Han, Soon-Woo;Park, Jin-Ho;Kang, To;Sohn, Ki Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.545-547
    • /
    • 2014
  • The portable vibration signal-based pipe wall thinning inspection device was developed in this work. Compared to wall-thinning detection using conventional ultrasonic thickness measurement gauge, the proposed device can estimate average wall thickness of wide range and be applied to in-service pipes. The measurement principle of the device was briefly described and the configrations of hardware and software were explained. It was shown that the device can gauge average wall-thickness of test specimens with high precision.

  • PDF

Full-Wave Analysis of Microwave Amplifiers with Nonlinear Device by the FDTD Algorithm

  • Kang, Hee-Jin;Park, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 2002
  • This paper presents the full wave analysis of microwave circuits with nonlinear device using the finite difference time domain method. The equivalent current source is used to model nonlinear device and all the electric field components at the nonlinear device are updated by FDTD algorithm. The currents and voltages of nonlinear device are calculated by the state equations and iteration method. To validate the proposed method, the S-parameters of NEC NE72089 MESFET in various conditions are analyzed and the results are compared with those of the ADS. The proposed method is applied to the analysis of a microwave amplifier, which includes NEC NE72089 MESFET. The analysis results obtained by the present method show good agreement with those of the ADS.

Real-time Control on LonWorks/IP Virtual Device Network(VDN) for Rail Transit Vehicles (철도차량용 LonWorks/IP 가상 디바이스 네트워크 (VDN)에서의 실시간 분산제어)

  • Choi, Gi-Heung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1253-1258
    • /
    • 2004
  • A general idea of implementing and managing real-time control on the VDN for rail transit vehicles is presented. In particular, the virtual device network considered in this paper is composed of Ethernet as the data network and LonWorks network as the device (control) network. A LonWorks/IP web server was used as a gateway to realize peer to peer data communication on the virtual device networks. Experimental results are given to validate the suggested architecture.

  • PDF

Fluid viscous device modelling by fractional derivatives

  • Gusella, V.;Terenzi, G.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical properties, two devices were tested the former behaving as a pure damper (PD device), whereas the latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried out under imposed displacement control. Secondarily, in order to describe their cyclical behavior, a model composed by an elastic and a damping element connected in parallel was defined. The elastic force was assumed as a linear function of the displacement whereas the damping one was expressed by a fractional derivative of the displacement. By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping coefficient and elastic stiffness) were identified by experimental results. The estimated values allowed to outline the main parameter properties on which depend both the elastic as well as the damping behavior of the considered devices.

Development of Hydraulic Device Performance Test Equipment Automation Process (유압 디바이스 성능 검사 장비 자동화 공정 개발)

  • Kim, Hong-Rok;Chung, Won-Jee;Seol, Sang-Seok;Park, Sang-Hyeok;Lee, Kyeong-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.74-80
    • /
    • 2020
  • Crawler-type hydraulic devices facilitate forward and backward driving of construction equipment by converting power into mechanical energy. The existing hydraulic device performance test process is time- and labor-intensive. This study aims to improve efficiency and productivity by automating the hydraulic device production performance test processes, which have been separately conducted so far. We also used SolidWorksⓇ, a 3D modeling program, and ANSYSⓇ, a structural analysis tool, for structural analysis and to verify the suitability of fixing pins required for connecting a hydraulic device to performance test equipment. Our results that employing an automated hydraulic device performance test process improves efficiency.

A Study on the Prioritization of Medical Device using Fuzzy-AHP (Fuzzy-AHP를 활용한 미래유망 의료기기 우선순위 도출)

  • Lee, Chang-Seop;Yoon, Jae-Woong;Chun, Jae-Heon;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.36 no.1
    • /
    • pp.181-213
    • /
    • 2017
  • According to the aging, the medical device industry is focused as a future promising industry. However, Korea medical device industry is not enough market competitiveness due to a narrow domestic market and a small company structure. This study aims at evaluating medical device priorities following 3 steps. First, we classify the medical device into three hierarchy categories and AHP survey was conducted on 30 experts in order to extract medical device priorities. Second, priority scores of medical device are analysed using AHP and Fuzzy-AHP. Third, a most important medical device is selected by comparing the volume of medical device manufacture and priority scores. As a result, 'dental implant' is the most import medical device, and we suggest a strategy based on a positioning map. The proposed methodology will provide a inspiration for establish of R&D and support policy in the medical device industry.

  • PDF

Effect of Mesh Screen Device on Over-Expanded Supersonic Jet Noise (메쉬 스크린 장치가 과팽창 초음속 제트소음에 미치는 영향)

  • Kweon, Yong-Hun;Kim, Jae-Hyung;Lim, Chae-Min;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3150-3155
    • /
    • 2007
  • This paper describes an experimental work to investigate the effect of mesh screen device on the jet structure and acoustic characteristics of over-expanded supersonic jet. The mesh screen device is placed into the supersonic jet stream. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The diameter of the perforated hole and the location of mesh screen device are varied. A Schlieren optical system is used to visualize the flow fields of supersonic jet without and with the mesh screen device. Pitot pressure measurement is carried out to obtain the pressure distribution in the jet flow. Acoustic measurement also is performed to obtain the OASPL and noise spectra. The results obtained show that the jet structure and the jet noise control effectiveness is strongly dependent upon the diameter of the perforated hole and the location of the mesh screen device in the jet stream. Provided that the mesh screen device is placed at the location to perturb effectively the initial shear layer, the present control method is effective in suppressing the supersonic jet noise.

  • PDF

A Wireless Glove-Based Input Device for Wearable Computers

  • An, Sang-Sup;Park, Kwang-Hyun;Kim, Tae-Hee;Jeon, Jae-Wook;Lee, Sung-Il;Choi, Hyuck-Yeol;Choi, Hoo-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1633-1637
    • /
    • 2003
  • Existing input devices for desktop computers are not suitable for wearable computers because they are neither easy to carry nor convenient to use in a mobile working environment. Different input devices for wearable computers must be developed. In this paper, a wireless glove-based input device for wearable computers is proposed. The proposed input device consists of a pair of chording gloves. Its keys are mounted on the fingers and their chording methods are similar to those of a Braille keyboard. RF (Radio Frequency) and IrDA (Infrared Data Association) modules are used to make the proposed input device wireless. Since the Braille representation for numbers and characters is efficient and has been well established for many languages in the world, the proposed input device may be one of good input devices to computers. Furthermore, since the Braille has been used for visually impaired people, the proposed one can be easily used as an input device to computers for them.

  • PDF

Changes in the quality of chest compressions applying a digital sensor device (디지털 센서 장비를 적용한 가슴 압박의 질 변화)

  • Yang, Hyun-Mo
    • The Korean Journal of Emergency Medical Services
    • /
    • v.18 no.1
    • /
    • pp.107-116
    • /
    • 2014
  • Purpose : The purpose of this study is to demonstrate the effectiveness of using a digital sensor device during CPR by analyzing the results from that chest compressions with a digital sensor device are applied to cardiac arrest patients. Methods : This study analyzed the results from the experiment that 42 people were selected randomly among Korean 119 rescuers, and they divided into the experimental group using a digital sensor device and the control group only using their hands, then they had been observed to conduct chest-compressions to mannequins for 10 minutes. Results : The results were found that compression depth in both the control and experimental group was gradually decreased over time, but the experimental group not only kept the depth but also maintained the speed of chest-compressions close to 100 times a minute. In addition, due to the use of the digital sensor device, the insufficient recoil ratio of chest-compressions was significantly reduced. Conclusion : The results show that conducting chest-compressions with a digital sensor device keeps the compression-death, maintains the speed of chest-compression properly and makes the insufficient relaxation ratio of chest-compressions reduce significantly.