• Title/Summary/Keyword: Developmental mutants

Search Result 54, Processing Time 0.131 seconds

A Mutation of cdc-25.1 Causes Defects in Germ Cells But Not in Somatic Tissues in C. elegans

  • Kim, Jiyoung;Lee, Ah-Reum;Kawasaki, Ichiro;Strome, Susan;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the germ line during postembryonic development, and that cdc-25.1 activity is probably not required in somatic lineages during larval development. We analyzed cell division of germ cells and somatic tissues in bn115 homozygotes with germline-specific anti-PGL-1 immunofluorescence and GFP transgenes that express in intestinal cells, in distal tip cells, and in gonadal sheath cells, respectively. We also analyzed the expression pattern of cdc-25.1 with conventional and quantitative RT-PCR. In the presence of three other family members of cdc-25.1 in C. elegans, defects are observed only in the germ line but not in the somatic tissues in cdc-25.1 single mutants, and cdc-25.1 is expressed predominantly, if not exclusively, in the germ line during postembryonic stages. Our findings indicate that the function of cdc-25.1 is unique in the germ line but likely redundant with other members in the soma.

Biological Activity of Human Dimeric Hyperglycosylated Erythropoietin (dHGEPO) Fusion Proteins

  • Naidansuren, Purevjargal;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Erythropoietin (EPO) is a glycoprotein hormone secreted from primarily cells of the peritubular capillary endothelium of the kidney, and is responsible for the regulation of red blood cell production. We constructed and expressed dimeric cDNAs in Chinease hamster ovary (CHO) cells encoding a fusion protein consisting of 2 complete human EPO domains linked by a 2-amino acid linker (Ile-Asp). We described the activity of dimeric hyperglycosylated EPO (dHGEPO) mutants containing additional oligosaccharide chains and characterized the function of glycosylation. No dimeric proteins with mutation at the $105^{th}$ amino acid were found in the cell medium. Growth and differentiation of the human EPO-dependent leukemiae cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of dHGEPO proteins. MIT assay at 24 h increased due to the survival of F36E cells. The dHGEPO protein migrated as a broad band with an average molecular mass of 75 kDa. The mutant, dHGEPO, was slightly higher than the wild-type (WT) dimeri-EPO band. Enzymatic N-deglycosylation resulted in the formation of a narrow band with a molecular mass twice of that of of monomeric EPO digested with an N-glycosylation enzyme. Hematocrit values were remarkably increased in all treatment groups. Pharmacokinetic analysis was also affected when 2.5 IU of dHGEPO were intravenously injected into the tails of the mice. The biological activity and half-life of dHGEPO mutants were enhanced as compared to the corresponding items associated the WT dimeric EPO. These results suggest that recombinant dHGEPO may be attractive biological and therapeutic targets.

Isolation and Characterization of a Ds-tagged liguleless Mutant in Rice (Oryza sativa. L)

  • Ahn, Byung-Ohg;Ji, Sang-Hye;Yun, Doh-Won;Ji, Hyeon-So;Park, Yong-Hwan;Park, Sung-Han;Lee, Gi-Hwan;Suh, Seok-Cheol;Lee, Myung-Chul
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • A liguleless mutant, which showed complete loss of lamina joint region at the junction between leaf blade and leaf sheath, was isolated from a Ds insertional mutants derived from the source cultivar, Dongjin. This mutant could not affect other developmental patterns like phyllotaxis. Southern blot analysis, using GUS as a probe, revealed that the liguleless mutant contained three Ds copies transposed in the rice genome. Among the four genomic sequences flanking the Ds, one was mapped in the intergenic region (31661640 - 31661759), and the other two predicted a protein kinase domain (12098980 - 12098667) as an original insertion site within a starter line used for massive production of Ds insertional mutant lines. Another predicted and inserted in first exon of liguleless 1 protein (OsLG1) that was mapped in coding region (LOC_Os04g56170) of chromosome 4. RT-PCR revealed that the OsLG1 gene was not expressed liguleless mutants. Structure analysis of OsLG1 protein revealed that it predicted transcription factor with a highly conserved SBP domain consisting of 79 amino acids that overlapped a nuclear localization signal (NLS). RT-PCR revealed that OsLG1 is mainly expressed in vegetative organs.

  • PDF

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng;Lee, Noh-Hyun;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2022
  • NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

Differential Activities of FOXL2 and Its Mutants on SF-1-Induced CYP19 Transcriptional Activation (SF-1을 매개한 CYP19의 전사활성에 미치는 FOXL2 야생형과 돌연변이형의 차별적 영향)

  • Park, Mi-Ra;Kim, Ah-Young;Na, Soon-Young;Kim, Hong-Man;Lee, Kang-Seok;Bae, Jee-Hyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • FOXL2 is a winged-helix/forkhead (FH) domain transcription factor, and mutations in FOXL2 gene are responsible for blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). BPES is an autosomal dominant genetic disease. BPES type I patients exhibit both premature ovarian failure (POF) and eyelid malformation, while only the eyelid defect is observed in BPES type II. FOXL2-null ovaries showed a blockage of granulosa cell differentiation, suggesting that FOXL2 plays an essential role for proper ovarian folliculogenesis. Previously, we screened for FOXL2-interacting proteins and identified steroidogenic factor-1 (SF-1) which is known to be required for gonad development and transactivates steroidogenic enzymes including CYP19. In the present study, we demonstrated that FOXL2 transactivates CYP19 and stimulated the transcriptional activation of CYP19 induced by SF-1. In contrast, FOXL2 mutants found in BPES type I and II exhibited compromised abilities to enhance CYP19 induction mediated by SF-1. Thus, this study provides a functional difference between wild-type FOXL2 and its mutants which may aid to understand pathophysiology of BPES elicited by FOXL2 mutations.

Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

  • Yoon, Jinmi;Cho, Lae-Hyeon;Lee, Sichul;Pasriga, Richa;Tun, Win;Yang, Jungil;Yoon, Hyeryung;Jeong, Hee Joong;Jeon, Jong-Seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.858-868
    • /
    • 2019
  • Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun;Park, Hyon Jin;Jung, Choonkyun;Sohn, Hwang Bae;Lee, Garam;Kim, Chung Ho;Kim, Minkyun;Choi, Yang Do;Cheong, Jong-Joo
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans

  • Lee, Jeeyong;Kim, Kwang-Youl;Paik, Young-Ki
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian $G_o$ and $G_q$ homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.