1 |
Golden, J. W. and Riddle, D. L. (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102, 368-378.
DOI
ScienceOn
|
2 |
Vowels, J. J. and Thomas, J. H. (1994) Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics 138, 303-316.
|
3 |
Jeong, P. Y., Jung, M., Yim, Y. H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y. H., Kim, K. and Paik, Y. K. (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541-545.
DOI
ScienceOn
|
4 |
Ohno, K., Tsujino, A., Brengman, J. M., Harper, C. M., Bajzer, Z., Udd, B., Beyring, R., Robb, S., Kirkham, F. J. and Engel, A. G. (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc. Natl. Acad. Sci. U. S. A. 98, 2017-2022.
DOI
ScienceOn
|
5 |
Tissenbaum, H. A., Hawdon, J., Perregaux, M., Hotez, P., Guarente, L. and Ruvkun, G. (2000) A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc. Natl. Acad. Sci. U. S. A. 97, 460-465.
DOI
|
6 |
Bastiani, C. and Mendel, J. (2006) Heterotrimeric G proteins in C. elegans. WormBook. 1-25.
|
7 |
Mufson, E. J., Counts, S. E., Perez, S. E. and Ginsberg, S. D. (2008) Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert. Rev. Neurother. 8, 1703-1718.
DOI
ScienceOn
|
8 |
Stacy, R. C., Demas, J., Burgess, R. W., Sanes, J. R. and Wong, R. O. (2005) Disruption and recovery of patterned retinal activity in the absence of acetylcholine. J. Neurosci. 25, 9347-9357.
DOI
ScienceOn
|
9 |
Chase, B. A. and Kankel, D. R. (1988) On the role of normal acetylcholine metabolism in the formation and maintenance of the Drosophila nervous system. Dev Biol. 125, 361-380.
DOI
ScienceOn
|
10 |
Rand, J. B. (2007) Acetylcholine. WormBook. 1-21.
|
11 |
Golden, J. W. and Riddle, D. L. (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102, 368-378.
DOI
ScienceOn
|
12 |
Hall, D. H. and Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847.
DOI
ScienceOn
|
13 |
Brundage, L., Avery, L., Katz, A., Kim, U. J., Mendel, J. E., Sternberg, P. W. and Simon, M. I. (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16, 999-1009.
DOI
ScienceOn
|
14 |
Lackner, M. R., Nurrish, S. J. and Kaplan, J. M. (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335-346.
DOI
ScienceOn
|
15 |
Vowels, J. J. and Thomas, J. H. (1994) Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics 138, 303-316.
|
16 |
Lee, J., Kim, K. Y., Lee, J. and Paik, Y. K. (2010) Regulation of Dauer formation by O-GlcNAcylation in Caenorhabditis elegans. J. Biol. Chem. 285, 2930-2939.
DOI
ScienceOn
|
17 |
Y. M., Chen, W. J., Patikoglou, G., Koelle, M. R. and Sternberg, P. W. (1999) Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 13, 1780-1793.
DOI
|
18 |
Dickinson, J. R., Salgado, L. E. and Hewlins, M. J. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8028-8034.
DOI
ScienceOn
|
19 |
Frische, E. W., Pellis-van Berkel, W., van Haaften, G., Cuppen, E., Plasterk, R. H., Tijsterman, M., Bos, J. L. and Zwartkruis, F. J. (2007) RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. EMBO J. 26, 5083-5092.
DOI
ScienceOn
|
20 |
Swoboda, P., Adler, H. T. and Thomas, J. H. (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol. Cell 5, 411-421.
DOI
ScienceOn
|
21 |
Pellis-van Berkel, W., Verheijen, M. H., Cuppen, E., Asahina, M., de Rooij, J., Jansen, G., Plasterk, R. H., Bos, J. L. and Zwartkruis, F. J. (2005) Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity. Mol. Biol. Cell. 16, 106-116.
|
22 |
Ha, M. K., Soo Cho, J., Baik, O. R., Lee, K. H., Koo, H. S. and Chung, K. Y. (2006) Caenorhabditis elegans as a screening tool for the endothelial cell-derived putative aging- related proteins detected by proteomic analysis. Proteomics 6, 3339-3351.
DOI
ScienceOn
|
23 |
Bargmann, C. I. and Horvitz, H. R. (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742.
DOI
ScienceOn
|
24 |
White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. Royal Soc. London. Series B, Biol. Scien. 314, 1-340.
DOI
ScienceOn
|
25 |
Butcher, R. A., Fujita, M., Schroeder, F. C. and Clardy, J. (2007) Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420-422.
DOI
ScienceOn
|
26 |
Li, Y. and Paik, Y. K. (2011) A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans. BMB Rep. 44, 285-290.
과학기술학회마을
DOI
ScienceOn
|
27 |
Butcher, R. A., Ragains, J. R. and Clardy, J. (2009) An indole- containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org. Lett. 11, 3100-3103.
DOI
ScienceOn
|
28 |
Joo, H. J., Kim, K. Y., Yim, Y. H., Jin, Y. X., Kim, H., Kim, M. Y. and Paik, Y. K. (2010) Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319-29325.
DOI
ScienceOn
|
29 |
Joo, H. J., Yim, Y. H., Jeong, P. Y., Jin, Y. X., Lee, J. E., Kim, H., Jeong, S. K., Chitwood, D. J. and Paik, Y. K. (2009) Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J. 422, 61-71.
DOI
ScienceOn
|
30 |
Garriga, G., Guenther, C. and Horvitz, H. R. (1993) Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins. Genes. Dev. 7, 2097-2109.
DOI
ScienceOn
|
31 |
Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H. T., Teal, P. E., Malik, R. U., Edison, A. S., Sternberg, P. W. and Schroeder, F. C. (2008) A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115-1118.
DOI
ScienceOn
|
32 |
Alfonso, A., Grundahl, K., Duerr, J. S., Han, H. P. and Rand, J. B. (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261, 617-619.
DOI
|
33 |
Bargmann, C. I. and Kaplan, J. M. (1998) Signal transduction in the Caenorhabditis elegans nervous system. Annu. Rev. Neurosci. 21, 279-308.
DOI
ScienceOn
|