Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.2.100

Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans  

Lee, Jeeyong (Yonsei Proteome Research Center, College of Life Science and Biotechnology, World Class University Program, Graduate School, Yonsei University)
Kim, Kwang-Youl (Yonsei Proteome Research Center, College of Life Science and Biotechnology, World Class University Program, Graduate School, Yonsei University)
Paik, Young-Ki (Yonsei Proteome Research Center, College of Life Science and Biotechnology, World Class University Program, Graduate School, Yonsei University)
Publication Information
BMB Reports / v.47, no.2, 2014 , pp. 80-85 More about this Journal
Abstract
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian $G_o$ and $G_q$ homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
Keywords
Acetylcholine; C. elegans; Dauer; G-protein; Proteomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Golden, J. W. and Riddle, D. L. (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102, 368-378.   DOI   ScienceOn
2 Vowels, J. J. and Thomas, J. H. (1994) Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics 138, 303-316.
3 Jeong, P. Y., Jung, M., Yim, Y. H., Kim, H., Park, M., Hong, E., Lee, W., Kim, Y. H., Kim, K. and Paik, Y. K. (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541-545.   DOI   ScienceOn
4 Ohno, K., Tsujino, A., Brengman, J. M., Harper, C. M., Bajzer, Z., Udd, B., Beyring, R., Robb, S., Kirkham, F. J. and Engel, A. G. (2001) Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc. Natl. Acad. Sci. U. S. A. 98, 2017-2022.   DOI   ScienceOn
5 Tissenbaum, H. A., Hawdon, J., Perregaux, M., Hotez, P., Guarente, L. and Ruvkun, G. (2000) A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc. Natl. Acad. Sci. U. S. A. 97, 460-465.   DOI
6 Bastiani, C. and Mendel, J. (2006) Heterotrimeric G proteins in C. elegans. WormBook. 1-25.
7 Mufson, E. J., Counts, S. E., Perez, S. E. and Ginsberg, S. D. (2008) Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert. Rev. Neurother. 8, 1703-1718.   DOI   ScienceOn
8 Stacy, R. C., Demas, J., Burgess, R. W., Sanes, J. R. and Wong, R. O. (2005) Disruption and recovery of patterned retinal activity in the absence of acetylcholine. J. Neurosci. 25, 9347-9357.   DOI   ScienceOn
9 Chase, B. A. and Kankel, D. R. (1988) On the role of normal acetylcholine metabolism in the formation and maintenance of the Drosophila nervous system. Dev Biol. 125, 361-380.   DOI   ScienceOn
10 Rand, J. B. (2007) Acetylcholine. WormBook. 1-21.
11 Golden, J. W. and Riddle, D. L. (1984) The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev. Biol. 102, 368-378.   DOI   ScienceOn
12 Hall, D. H. and Hedgecock, E. M. (1991) Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847.   DOI   ScienceOn
13 Brundage, L., Avery, L., Katz, A., Kim, U. J., Mendel, J. E., Sternberg, P. W. and Simon, M. I. (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16, 999-1009.   DOI   ScienceOn
14 Lackner, M. R., Nurrish, S. J. and Kaplan, J. M. (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24, 335-346.   DOI   ScienceOn
15 Vowels, J. J. and Thomas, J. H. (1994) Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. Genetics 138, 303-316.
16 Lee, J., Kim, K. Y., Lee, J. and Paik, Y. K. (2010) Regulation of Dauer formation by O-GlcNAcylation in Caenorhabditis elegans. J. Biol. Chem. 285, 2930-2939.   DOI   ScienceOn
17 Y. M., Chen, W. J., Patikoglou, G., Koelle, M. R. and Sternberg, P. W. (1999) Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev. 13, 1780-1793.   DOI
18 Dickinson, J. R., Salgado, L. E. and Hewlins, M. J. (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8028-8034.   DOI   ScienceOn
19 Frische, E. W., Pellis-van Berkel, W., van Haaften, G., Cuppen, E., Plasterk, R. H., Tijsterman, M., Bos, J. L. and Zwartkruis, F. J. (2007) RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. EMBO J. 26, 5083-5092.   DOI   ScienceOn
20 Swoboda, P., Adler, H. T. and Thomas, J. H. (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol. Cell 5, 411-421.   DOI   ScienceOn
21 Pellis-van Berkel, W., Verheijen, M. H., Cuppen, E., Asahina, M., de Rooij, J., Jansen, G., Plasterk, R. H., Bos, J. L. and Zwartkruis, F. J. (2005) Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity. Mol. Biol. Cell. 16, 106-116.
22 Ha, M. K., Soo Cho, J., Baik, O. R., Lee, K. H., Koo, H. S. and Chung, K. Y. (2006) Caenorhabditis elegans as a screening tool for the endothelial cell-derived putative aging- related proteins detected by proteomic analysis. Proteomics 6, 3339-3351.   DOI   ScienceOn
23 Bargmann, C. I. and Horvitz, H. R. (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729-742.   DOI   ScienceOn
24 White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1986) The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. Royal Soc. London. Series B, Biol. Scien. 314, 1-340.   DOI   ScienceOn
25 Butcher, R. A., Fujita, M., Schroeder, F. C. and Clardy, J. (2007) Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420-422.   DOI   ScienceOn
26 Li, Y. and Paik, Y. K. (2011) A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans. BMB Rep. 44, 285-290.   과학기술학회마을   DOI   ScienceOn
27 Butcher, R. A., Ragains, J. R. and Clardy, J. (2009) An indole- containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org. Lett. 11, 3100-3103.   DOI   ScienceOn
28 Joo, H. J., Kim, K. Y., Yim, Y. H., Jin, Y. X., Kim, H., Kim, M. Y. and Paik, Y. K. (2010) Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319-29325.   DOI   ScienceOn
29 Joo, H. J., Yim, Y. H., Jeong, P. Y., Jin, Y. X., Lee, J. E., Kim, H., Jeong, S. K., Chitwood, D. J. and Paik, Y. K. (2009) Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J. 422, 61-71.   DOI   ScienceOn
30 Garriga, G., Guenther, C. and Horvitz, H. R. (1993) Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins. Genes. Dev. 7, 2097-2109.   DOI   ScienceOn
31 Srinivasan, J., Kaplan, F., Ajredini, R., Zachariah, C., Alborn, H. T., Teal, P. E., Malik, R. U., Edison, A. S., Sternberg, P. W. and Schroeder, F. C. (2008) A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115-1118.   DOI   ScienceOn
32 Alfonso, A., Grundahl, K., Duerr, J. S., Han, H. P. and Rand, J. B. (1993) The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science 261, 617-619.   DOI
33 Bargmann, C. I. and Kaplan, J. M. (1998) Signal transduction in the Caenorhabditis elegans nervous system. Annu. Rev. Neurosci. 21, 279-308.   DOI   ScienceOn