Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0141

Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice  

Yoon, Jinmi (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Cho, Lae-Hyeon (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Lee, Sichul (Center for Plant Aging Research, Institute for Basic Science)
Pasriga, Richa (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Tun, Win (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Yang, Jungil (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Yoon, Hyeryung (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Jeong, Hee Joong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Jeon, Jong-Seong (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
An, Gynheung (Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University)
Abstract
Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.
Keywords
bud outgrowth; chromatin modification; rice;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tanaka, W., Ohmori, Y., Ushijima, T., Matsusaka, H., Matsushita, T., Kumamaru, T., Kawano, S., and Hirano, H.Y. (2015). Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell 27, 1173-1184.   DOI
2 Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., and Kyozuka J. (2007). DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029.   DOI
3 Bemer, M. and Grossniklaus, U. (2012). Dynamic regulation of Polycomb groub activity during plant development. Curr. Opin. Plant Biol. 15, 523-529.   DOI
4 Chen, Y., Fan, X., Song, W., Zhang, Y., and Xu, G. (2012). Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol. J. 10, 139-149.   DOI
5 Conrad, L.J., Khanday, I., Johnson, C., Guiderdoni, E., An, G., Vijayraghavan, U., and Sundaresan, V. (2014). The polycomb groub gene EMF2B is essential for maintenance of floral meristem determinacy in rice. Plant J. 80, 883-894.   DOI
6 Cho, L.H., Yoon, J., Pasriga, R., and An, G. (2016). Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiol. 170, 2159-2171.   DOI
7 Cho, L.H., Yoon, J., Wai, A.H., and An, G. (2018b). Histone deacetylase 701 (HDT701) induces flowering in rice by modulating expression of OsIDS1. Mol. Cells 41, 665-675.   DOI
8 Cohen, Y. and Cohen, J.Y. (2008). Analysis of variance. In Statistics and Data with R: An Applied Approach through Examples, Y. Cohen and J.Y. Cohen, eds. (Chichester: John Willey & Sons), pp. 417-461.
9 Deshpande, G.M., Ramakrishna, K., Chongloi, G.L., and Vijayraghavan, U. (2015). Functions for rice RFL in vegetative axillary meristem specification and outgrowth. J. Exp. Bot. 66, 2773-2784.   DOI
10 Hussien, A., Tavakol, E., Horner, D.S., Munoz-Amatriain, M., Muehlbauer, G.J., and Rossini, L. (2014). Genetics of tillering in rice and barley. Plant Genome 7, 1-20.
11 Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I., and Junko, K. (2005). Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79-86.   DOI
12 Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., King, C., Jang, S., Lee, S., Yang, K., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570.   DOI
13 Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H., An, K., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644.   DOI
14 Wang, Y., Sun, S., Zhu, W., Jia, K., Yang, H., and Wang, X. (2013). Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 27, 681-688.   DOI
15 Tian, C. and Jiao, Y. (2015). A systems approach to understand shoot branching. Curr. Opin. Plant Biol. 3-4, 13-19.   DOI
16 Wai, A.H. and An, G. (2017). Axillary meristem initiation and bud growth in rice. J. Plant Biol. 60, 440-451.   DOI
17 Wang, Y. and Li, J. (2011). Branching in rice. Curr. Opin. Plant Biol. 14, 94-99.   DOI
18 Xie, K., Minkenberg, B., and Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. U. S. A. 112, 3570-3575.   DOI
19 Xu, M., Zhu, L., Shou, H., and Wu, P. (2005). A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 46, 1674-1681.   DOI
20 Yang, J., Cho, L.H., Yoon, J., Yoon, H., Wai, A.H., Hong, W.J., Han, M.H., Sakakibara, H., Liang, W., Jung, K.H., et al. (2019). Chromatin interacting factor of OsVIL2 increases biomass and rice grain yield. Plant Biotechnol. J. 17, 178-187.   DOI
21 Yang, J., Lee, S., Hang, R., Kim, S.R., Lee, Y.S., Cao, X., Amasino, R., and An, G. (2013). OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J. 73, 566-578.   DOI
22 Cho, L.H., Pasriga, R., Yoon, J., Jeon, J.S., and An, G. (2018a). Roles of sugars in controlling flowering time. J. Plant Biol. 61, 121-113.   DOI
23 Greb, T., Mylne, J.S., Crevillen, P., Geraldo, N., An, H., Gendall, A.R., and Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr. Biol. 17, 73-78.   DOI
24 Guo, S., Xu, Y., Lie, H., Mao, Z., Zhang, C., Ma, Y., Zhang, Q., Meng, Z., and Chong, K. (2013). The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4, 1566.   DOI
25 Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., and Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3, 1-16.   DOI
26 Lee, D.Y., Lee, J., Moon, S., Park, S.Y., and An, G. (2007). The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J. 49, 64-78.   DOI
27 Jeong, H.J., Yang, J., Yi, J., and An, G. (2015). Controlling flowering time by histone methylation and acetylation in Arabidopsis and rice. J. Plant Biol. 58, 203-210.   DOI
28 Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X., Liu, G., Yu, H., Yuan, Y., et al. (2013). DWARF53 acts as a repressor of strigolactone signaling in rice. Nature 504, 401-405.   DOI
29 Lee, D.Y. and An, G. (2012). Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J. 69, 445-461.   DOI
30 Li, X., Qian, Q., Fu, Z., Wang, Y., Xiong, G., Zeng, D., Wang, X., Liu, X., Teng, S., Hiroshi, F., et al. (2003). Control of tillering in rice. Nature 422, 618-621.   DOI
31 Zhao, J., Wang, T., Wang, M., Liu, Y., Yuan, S., Gao, Y., Yin, L., Sun, W., Peng, L., Zhang, W., et al. (2014). DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol. 55, 1096-1109.   DOI
32 Yeh, S.Y., Chen, H.W., Ng, C.Y., Lin, C.Y., Tseng, T.H., Li, W.H., and Ku, M.S.B. (2015). Down-regulation of Cytokinin Oxidase 2 expression increases tiller number and improves rice yield. Rice 8, 36.   DOI
33 Yoon, H., Yang, J., Liang, W., Zhang, D., and An, G. (2018). OsVIL2 regulates spikelet development by controlling regulatory genes in Oryza sativa. Front. Plant Sci. 9, 102.   DOI
34 Yoon, J., Cho, L.H., Antt, H.W., Koh, H.J., and An, G. (2017). KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol. 174, 312-325.   DOI
35 Yoon, J., Cho, L.H., Kim, S.L., Choi, H., Koh, H.J., and An, G. (2014). The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J. 79, 717-728.   DOI
36 Zhang, S., Li, G., Fang, J., Chen, W., Jiang, H., Zou, J., Liu, X., Zhao, X., Li, X., Chu, C., et al. (2010). The interaction among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J. Integr. Plant Biol. 52, 626-638.   DOI
37 Mozgova, I. and Henning, L. (2015). The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 66, 269-296.   DOI
38 Zou, J., Zhang, S., Zhang, W., Li, G., Chen, Z., Zhai, W., Zhao, X., Pan, X., Xie, Q., and Zhu, L. (2006). The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48, 687-696.   DOI
39 Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J., et al. (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, requires rice tiller bud outgrowth. Plant Cell 21, 1512-1525.   DOI
40 Minakuchi, K., Kameoka, H., Yasuno, N., Umehara, M., Luo, L., Kobayashi, K., Hanada, A., Ueno, K., Asami, T., Yamaguchi, S., et al. (2010). FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 51, 1127-1135.   DOI
41 Nakamura, H., Xue, Y.L., Miyakawa, T., Hou, F., Qin, H.M., Fukui, K., Shi, X., Ito, E., Ito, S., and Park, S.H. (2013). Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613.   DOI
42 Oikawa, T. and Kyozuka, J. (2009). Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21, 1095-1108.   DOI
43 Tabuchi, H., Zhang, Y., Hattori, S., Omae, M., Shimizu-Sato, S., Oikawa, T., Qian, Q., Nishimura, M., Kitano, H., Xie, H., et al. (2011). LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276-3287.   DOI
44 Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., and Ueguchi, C. (2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513-520.   DOI