• Title/Summary/Keyword: Development Impact Prediction

Search Result 213, Processing Time 0.024 seconds

A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area (도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구)

  • Jinuk Kwon;Naehyun Lee;Jeongha Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.84-98
    • /
    • 2024
  • This study proposed a prediction equation for the estimation of blasting vibaration and blasting noise, utilizing 320 datasets for the blasting vibration and blasting noise acquired during urban blasting works in the Incheon, Suwon, Wonju, and Yangsan regions. The proposed blasting vibration prediction equation, derived from regression analysis, indicated correlation coefficients of 0.879 and 0.890 for SRSD and CRSD, respectively, with an R2 value exceeding 0.7. In the case of the blasting noise prediction equation, stepwise regression analysis yielded a correlation coefficient of 0.911 between the prediction values and real measurements for the blasting nosie, and further analysis to determine the constant value revealed a correlation coefficient of 0.881, with an R2 value also exceeding 0.7. These results suggest the feasibility of applying the proposed prediction equations when environmental impact assessments or education environment evaluation according to urban development or apartment construction projects is performed.

Reformation Methods of Environmental Impact Assessment in Water Resources Development Project by Examining Local Resident Opinions (수자원 개발사업 주민의견 유형분석을 통한 환경영향평가 개선방안)

  • Yang, Kee-Hyoun;Park, Jae-Chung;Ryu, Young-Han;Jeong, Yong-Moon;Song, Sang-Jin;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.397-409
    • /
    • 2011
  • This study was carried out for improving the effectiveness of water resources development project through local resident opinions in the environmental impact assessment(EIA). The EIA reports of seven dams were examined. Four dams -Youngju Dam, Seongduck Dam, Buhang Dam and Hantangang Dam- which included many local opinions including 470 opinions of 341 local residents were selected to be analyzed. Local residents submitted their opinions in the six fields which are meteorological phenomena, water quality, land use, fauna and flora, noise and vibration, and residence, and the major opinions of those opinions came from the atmosphere environment field which is 32% of total opinions and social and economic field which is 38% of total opinions, respectively. In submerged area, opinions of the measure for migration and compensation were 91% and in non-submerged area, opinions of the measure for meteorological phenomena was 86%. Those percentages were maximum in each area. Opinions concerned meteorological phenomena were 86% and 53% in Youngju Dam and Seongduck Dam where area is surrounded by existing dam, but there was only 9% and 0% of opinions in Buhang Dam and Hantangang Dam where area is without existing dam nearby. The reformation methods which reflected the resident's opinions were suggested on EIA in dam development projects. First of all, reliability and objectivity of the field of meteorological phenoma should be enhanced by scientific prediction of the phenomenon days. Secondly, techniques reducing uncertainty of various water quality prediction models ought to be developed and effectiveness of the reduction strategies in environmental impact should be quantified. Finally, the draft of EIA report should involve the detailed plans of migration and compensation's procedures, criteria and measures to support.

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

Development of AI-based Prediction and Assessment Program for Tunnelling Impact

  • Yoo, Chungsik;HAIDER, SYED AIZAZ;Yang, Jaewon;ALI, TABISH
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.39-52
    • /
    • 2019
  • In this paper the development and implementation of an artificial intelligence (AI)-based Tunnelling Impact prediction and assessment program (SKKU-iTunnel) is presented. Program predicts tunnelling induced surface settlement and groundwater drawdown by utilizing well trained ANNs and uses these predicted values to perform the damage assessment likely to occur in nearby structures and pipelines/utilities for a given tunnel problem. Generalised artificial neural networks (ANNs) were trained, to predict the induced parameters, through databases generated by combining real field data and numerical analysis for cases that represented real field conditions. It is shown that program equipped with carefully trained ANN can predict tunnel impact assessments and perform damage assessments quiet efficiently and comparable accuracy to that of numerical analysis. This paper describes the idea and implementation details of the SKKU-iTunnel with an example for demonstration.

Analysis of EIA for Electric power plant construction (전력산업의 환경영향평가 분석을 통한 제도개선)

  • Cha, Dong-Won;Kim, Yong-Hwa;Jeong, Kee-Wook;Kim, Chang-Hyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.145-152
    • /
    • 1998
  • The first Environmental Impact Assessment(EIA) in Korea was carried out for Electric Power resource development. This study includes of the method and procedure of pre-Environmental investigation and EIA for Electric Power resource development. Through the analysis of these we make some conclusions for the improvemental and effective method of impact prediction, the environmentally sound and sustainable development of the earth(ESSD) and the collection of public opinions.

  • PDF

Development of the Inflow Temperature Regression Model for the Thermal Stratification Analysis in Yongdam Reservoir (용담호 수온성층해석을 위한 유입수온 회귀분석 모형 개발)

  • Ahn, Ki Hong;Kim, Seon Joo;Seo, Dong Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 2011
  • In this study, a regression model was developed for prediction of inflow temperature to support an effective thermal stratification simulation of Yongdam Reservoir, using the relationship between gaged inflow temperature and air temperature. The effect of reproductability for thermal stratification was evaluated using EFDC model by gaged vertical profile data of water temperature(from June to December in 2005) and ex-developed regression models. Therefore, in the development process, the coefficient of correlation and determination are 0.96 and 0.922, respectively. Moreover, the developed model showed good performance in reproducing the reservoir thermal stratification. Results of this research can be a role to provide a base for building of prediction model for water quality management in near future.

Road Traffic Noise Status and Prediction (도로교통소음 현황과 예측)

  • 김종민;박준철;강대준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1015-1020
    • /
    • 2004
  • The road traffic noise becomes aggravated due to the rapid increase of vehicles. It has a great effect on the dwelling environment. Therefore we investigate the characteristics and sources of the road traffic noise through grasping the status of the road traffic noise. This paper is concerned with the description of the various factors affecting the generation and propagation of outdoor traffic noise. It is particularly concerned with the mathematical interpretation of these processes and the resulting development of prediction techniques which are now broadly used for both the environment impact assessment of road traffic noise and the planning and design of roads and adjoining land use.

Land Use Change Prediction of Cheongju using SLEUTH Model (SLEUTH 모델을 이용한 청주시 토지이용변화 예측)

  • Park, In-Hyeok;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.109-116
    • /
    • 2013
  • By IPCC climate change scenario, the socioeconomic actions such as the land use change are closely associated with the climate change as an up zoning action of urban development to increase green gas emission to atmosphere. Prediction of the land use change with rational quality can provide better data for understanding of the climate change in future. This study aims to predict land use change of Cheongju in future and SLEUTH model is used to anticipate with the status quo condition, in which the pattern of land use change in future follows the chronical tendency of land use change during last 25 years. From 40 years prediction since 2000 year, the area urbanized compared with 2000 year increases up to 87.8% in 2040 year. The ratios of the area urbanized from agricultural area and natural area in 2040 are decreased to 53.1% and 15.3%, respectively.

Development of Impact-sliding wear model for Steam Generator Tubes (증기발생기 전열관 충격 미끄럼 마모 모델 개발)

  • Daeyeop Kwon;Heejae Shin;Young-Jin Oh;Chi Bum Bahn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • The phenomenon of fretting wear due to the flow-induced vibration in steam generator (SG) tube is a significant degradation mechanism in nuclear power plants. Fretting wear in SG tube is primarily attributed to the friction and impact forces between the SG tube and the tube support structures, experienced during nuclear power plants operation. While the Archard model has generally been used for the prediction of fretting wear in SG tube, it is limited by its linear nature. In this study, we introduced an "Impact Shear Work-rate" (ISW) model, which takes into account the combined effects of impact and sliding. The ISW model was evaluated using existing experimental data on fretting wear in SG tube and was compared against the Archard model. The prediction results using the ISW model were more accurate than those using the Archard model, particularly for impact forces.