• Title/Summary/Keyword: Deterministic sensitivity

Search Result 128, Processing Time 0.025 seconds

Robust Design Study of Engine Cylinder Head (엔진 실린더헤드 강건 설계 방안)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.133-139
    • /
    • 2011
  • Maintaining adequate sealing in engine cylinder head is a crucial factor in engine design. Failure of engine operations occurs mainly owing to the leaking by decreased sealing pressure. Reliability-robustness concept is applied to the engine cylinder head system. Deterministic way to obtain engineering solution in CAE industry may not consider the effects of noises and disturbances experienced during operation. However, analytical reliability-robustness concept may make possible to reduce the sensitivity of system with noise factors. Influences of design factors including noise factors would be predicted in analytical way. Optimized design may be obtained by shrinking variability and shifting to design target. Three-dimensional finite element analyses have been performed to apply analytical reliability-robustness concept.

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.

Stochastic finite element method homogenization of heat conduction problem in fiber composites

  • Kaminski, Marcin
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.373-392
    • /
    • 2001
  • The main idea behind the paper is to present two alternative methods of homogenization of the heat conduction problem in composite materials, where the heat conductivity coefficients are assumed to be random variables. These two methods are the Monte-Carlo simulation (MCS) technique and the second order perturbation second probabilistic moment method, with its computational implementation known as the Stochastic Finite Element Method (SFEM). From the mathematical point of view, the deterministic homogenization method, being extended to probabilistic spaces, is based on the effective modules approach. Numerical results obtained in the paper allow to compare MCS against the SFEM and, on the other hand, to verify the sensitivity of effective heat conductivity probabilistic moments to the reinforcement ratio. These computational studies are provided in the range of up to fourth order probabilistic moments of effective conductivity coefficient and compared with probabilistic characteristics of the Voigt-Reuss bounds.

ANALYSIS OF THE MITIGATION STRATEGIES FOR MARRIAGE DIVORCE: FROM MATHEMATICAL MODELING PERSPECTIVE

  • TESSEMA, HAILEYESUS;MENGISTU, YEHUALASHET;KASSA, ENDESHAW
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.857-871
    • /
    • 2022
  • In this work, we formulated a mathematical model for divorce in marriage and extended in to an optimal control model. Firstly, we qualitatively established the model positivity and boundedness. Also we saw sensitivity analysis of the model and identified the positive and negative indices parameters. An optimal control model were developed by incorporating three time dependent control strategies (couple relationship education, reducing getting married too young & consulting separators to renew their marriage) on the deterministic model. The Pontryagin's maximum principle were used for the derivation of necessary conditions of the optimal control problem. Finally, with Newton's forward and backward sweep method numerical simulation were performed on optimality system by considering four integrated strategies. So that we reached to a result that using all three strategies simultaneously (the strategy D) is an optimal control in order to effectively control marriage divorce over a specified period of time. From this we conclude that, policymakers and stakeholders should use the indicated control strategy at a time in order to fight against Divorce in a population.

Real variance estimation in iDTMC-based depletion analysis

  • Inyup Kim;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4228-4237
    • /
    • 2023
  • The Improved Deterministic Truncation of Monte Carlo (iDTMC) is a powerful acceleration and variance reduction scheme in the Monte Carlo analysis. The concept of the iDTMC method and correlated sampling-based real variance estimation are briefly introduced. Moreover, the application of the iterative scheme to the correlated sampling is discussed. The iDTMC method is utilized in a 3-dimensional small modular reactor (SMR) model problem. The real variances of burnup-dependent criticality and power distribution are evaluated and compared with the ones obtained from 30 independent iDTMC calculations. The impact of the inactive cycles on the correlated sampling is also evaluated to investigate the consistency of the correlated sample scheme. In addition, numerical performances and sensitivity analysis on the real variance estimation are performed in view of the figure of merit of the iDTMC method. The numerical results show that the correlated sampling accurately estimates the real variances with high computational efficiencies.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Quantifying Uncertainty for the Water Balance Analysis (물수지 분석을 위한 불확실성 정량화)

  • Lee, Seung-Uk;Kim, Young-Oh;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.281-292
    • /
    • 2005
  • The water balance analysis for the long-term water resources plan is a simple calculation that compares water demands with possible water supplies. For a watershed being considered the reports on the performance of the water balance analysis, however, have shown inconsistent results and thus have not earned credibility due to the uncertainty of the data acquired and models used. In this research, uncertainties in the water scarcity estimate were assessed through probability representation based on the Monte Carlo simulation using Latin Hypercube Sampling (LHS). The natural flow, municipal demand, industrial demand, agricultural demand, and return flow rate were selected as representative input variables for the water balance analysis, and their distributions were set based on the linear regression and the entropy theory. The statistical properties of the output variable samples were analyzed in comparison with a deterministic estimate of the water scarcity of an existing study. Application of LHS to three sub-basins of the Geum river basin showed the deterministic estimate could be overestimated or underestimated. The sensitivity analysis as well as the uncertainty analysis found that the return flow rate of the agricultural water is the most uncertain but is rarely sensitive to the output of the water balance analysis.

Comparison between Cournot-Nash and Stackelberg Game in Bi-level Program (Bi-level program에서 Cournot-Nash게임과 Stackelberg게임의 비교연구)

  • Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.99-106
    • /
    • 2004
  • This paper presents some comparisons between Cournot-Nash and Stackelberg game in bi-level program, composed of both upper level program and lower level one. The upper level can be formulated to optimize a specific objective function, while the lower formulated to express travelers' behavior patterns corresponding to the design parameter of upper level problem. This kind of hi-level program is to determine a design parameter, which leads the road network to an optimal state. Bi-level program includes traffic signal control, traffic information provision, congestion charge and new transportation mode introduction as well as road expansion. From the view point of game theory, many existing algorithms for bi-level program such as IOA (Iterative Optimization Assignment) or IEA (Iterative Estimation Assignment) belong to Cournot-Nash game. But sensitivity-based algorithms belongs to Stackelberg one because they consider the reaction of the lower level program. These two game models would be compared by using an example network and show some results that there is no superiority between the models in deterministic case, but in stochastic case Stackelberg approach is better than that of Cournot-Nash one as we expect.

Human Health Risk Assessment of BTEX from Daesan Petrochemical Industrial Complex (대산 석유화학 산업단지 인근 지역에서의 BTEX 인체 위해성 평가)

  • Lee, Jihyeong;Jang, Yong-Chul;Cheon, Kwangsoo;Kim, Bora
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.321-333
    • /
    • 2022
  • In this study, the concentration and distribution characteristics of BTEX (benzene toluene, ethylbenzene, and xylene) emitted from Daesan Petrochemical Industrial Complex were examined to determine their potential hazards to local residents. Residents living nearby the complex areas may be exposed to the chemicals through various media (air, water, and soil), especially by air. This study evaluated human health risks by inhalation using both deterministic and probabilistic risk assessment approaches. As a result of the deterministic risk assessment, the non-cancer risk was much lower than the regulation limit of hazard index (HI 1.0) for all the points. However, in case of cancer risk evaluation, it was found that the risk of excess cancer for benzene at point A located in the industrial complex was 2.28×10-6, which slightly exceeded the standard regulatory limit of 1.0×10-6. In addition, the probabilistic risk assessment revealed that the percentile exceeding the standard of 1.0×10-6was found to be 45.3%. The sensitivity analysis showed that exposure time (ET) had the greatest impact on the results. Based on the risk assessment study, it implied that ethylbenzene, toluene, and xylene had little adverse effects on potential human exposure, but benzene often exceeded the cancer risk standard (1.0×10-6). Further studies on extensive VOCs monitoring are needed to evaluate the potential risks of industrial complex areas.