• Title/Summary/Keyword: Detector sensitivity

Search Result 427, Processing Time 0.027 seconds

Design and Implementation of Multifunction 2-Channel Receiver for 3 Dimensional Phased Array Radar (3차원 위상배열 레이다용 다기능 2채널 수신기 설계 및 제작)

  • 강승민;양진모;송재원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.1-12
    • /
    • 1998
  • We have implemented receiver for a 3 Dimensional Phased-Array Radar detecting the azimuth angle, the altitude, the range of a target on real time. This system consists of high frequency module, which protects receiver and controls sensitivity, intermediate frequency module, monopulse detector, IQ phase detector, AGC controller. A two-channel receiver with same function is implemented for increasing accuracy of target altitude data by amplitude comparison monopulse method. The TSS sensitivity of the receiver is -98dBm. The bandwidth of the receiver is 500 MHz. We can control the system gain manually by 100 dB when be AGC off. The gain and phase unbalance of two channels is 5 dB and 30 degree, respectively. The image rejection rate of the IQ detector is 30 dB. We used duroid substrate and package- type device.

  • PDF

Performance Estimation of an Implantable Epileptic Seizure Detector with a Low-power On-chip Oscillator

  • Kim, Sunhee;Choi, Yun Seo;Choi, Kanghyun;Lee, Jiseon;Lee, Byung-Uk;Lee, Hyang Woon;Lee, Seungjun
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.169-176
    • /
    • 2015
  • Implantable closed-loop epilepsy controllers require ideally both accurate epileptic seizure detection and low power consumption. On-chip oscillators can be used in implantable devices because they consume less power than other oscillators such as crystal oscillators. In this study, we investigated the tolerable error range of a lower power on-chip oscillator without losing the accuracy of seizure detection. We used 24 ictal and 14 interictal intracranial electroencephalographic segments recorded from epilepsy surgery patients. The performance variations with respect to oscillator frequency errors were estimated in terms of specificity, modified sensitivity, and detection timing difference of seizure onset using Generic Osorio Frei Algorithm. The frequency errors of on-chip oscillators were set at ${\pm}10%$ as the worst case. Our results showed that an oscillator error of ${\pm}10%$ affected both specificity and modified sensitivity by less than 3%. In addition, seizure onsets were detected with errors earlier or later than without errors and the average detection timing difference varied within less than 0.5 s range. The results suggest that on-chip oscillators could be useful for low-power implantable devices without error compensation circuitry requiring significant additional power. These findings could help the design of closed-loop systems with a seizure detector and automated stimulators for intractable epilepsy patients.

Recent Advances in Nuclear Medicine Imaging Instrumentation (핵의학 영상기기의 최근 진보)

  • Jung, Jin-Ho;Choi, Yong;Hong, Key-Jo;Min, Byung-Jun;Hu, Wei;Kang, Ji-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Feasibility study of Hybrid X-ray detecter for Digital X-ray imaging application (디지털 방사선 적용을 위한 Hybrid 방사선 검출기의 Feasibility 연구)

  • Choi, Jang-Yong;Park, Ji-Koon;Lee, Chae-Hun;Lee, Kyu-Hong;Choi, Heung-Kook;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.77-80
    • /
    • 2004
  • In this study, the purpose is to verified the feasibility to develope Hybrid x-ray detector in order to resolve problems of direct and indirect x-ray detectors. The properties of X-ray detector depend on absorption of X-ray, charge generation by x-ray photon, leakage current. In this study, CdS was used as photoconductor, and $Y_2O_2S:Tb$ as x-ray phosphor was formed on CdS in order to embody Hybrid structure. And Screen printing was used to form Muli-layer. Characteristics of this specimen were analyzed by using SEM, and XRD. And Photoluminescence spectrum of $Y_2O_2S:Tb$, leakage current, with respect to applied voltages, output charge with respect to applied voltages, and X-ray sensitivity were measured. Also, linearity with respect to dose was measured. Leakage current was similar with direct digital x-ray detector, but sensitivity of the hybrid structure is much better than the single-layer structure.

  • PDF

Structural Design of Digital Radiography Detector using Hybrid Method for the Improvement of Response Property by X-ray (X-ray 반응 특성 개선을 위한 Hybrid형 디지털 방사선 검출기의 구조 설계)

  • Kim, Kyo-Tae;Han, Moo-Jae;Kim, Jin-Seon;Heo, Ye-Ji;Oh, Kyung-Min;Park, Ji-Koon;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.363-367
    • /
    • 2015
  • Digital radiography is divided into the direct method using photoconductor and indirect method using phosphor based on the principles in acquiring the image information, but both have different advantages and disadvantages. Therefore, this study conducted a preliminary research on the structure of the hybrid detector that combined phosphor and photoconductor to improve the sensitivity of X-ray. As a result, when the tube voltage was adjusted at 30ms of exposure time, the direct structure displayed an overall excellent sensitivity, but at the exposure time of 50ms or more, the hybrid structure displayed a better outcome. This seems to have enough research value considering that various clinical examinations usually include 50ms or more exposure time.

Monte Carlo Simulation-Based Mammographic Anti-Scatter Grids to Evaluate Performance of Digital Mammography Detector (디지털 맘모 디텍터 성능평가를 위한 몬테카를로용 산란선 제거 그리드 작성에 관한 연구)

  • Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • In Recent years, there has been a noticeable increase in the global incidence of breast cancer, with approximately 2.3 million cases of female breast cancer reported worldwide in 2020. Numerous studies are currently underway to enhance the accuracy of breast cancer diagnosis through the development of digital mammography detectors. This study aims to create Monte Carlo simulation-based mammographic anti-scatter grids and investigate their utility in evaluating the performance of digital mammography detector. Two types of mammographic anti-scatter grids, MAM-CP and Senographe 600T HF, were created using Monte Carlo simulation software (MCNPX 2.7.0), with grid ratios of 3.7 : 1 and 5 : 1, respectively. The grid physical characteristics (sensitivity, exposure factor, contrast improvement ratio) were calculated based on the KS C IEC60627 in the simulations using two X-ray qualities, RQA-M2 (28 kVp) and MW4 (35 kVp). As the X-ray tube voltage increased from 28 kVp to 35 kVp, sensitivity and exposure factor exhibited a decreasing trend, while contrast improvement ratio demonstrated an increasing trend. With an increase in grid ratio from 3.7 : 1 to 5 : 1, all physical characteristics showed an upward trend. Our results were consistent with a previous study that conducted measurements of physical properties using a real phantom. However, the pattern of change in the contrast improvement ratio with X-ray tube voltage differed from the previous study.

Evaluation of Spatial Uniformity about Resolution and Sensitivity of a 'fixed focusing type SPECT' (고정식 초점형 SPECT에 있어, 선예도와 감도의 공간 균일성에 대한 평가)

  • Kim, Jaeil;Lim, Jeongjin;Cho, Seongwook;Noh, Kyeongwoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2019
  • Purpose At now, there are many kind of dedicated heart SPECT machine in clinical nuclear medicine. Among those, the fixed focusing type SPECT can make a good quality, quantity image because a detectors of this SPECT arranged forward a special ROI and didn't rotate around of body. So, in this paper, we will evaluate a spatial uniformity about resolution and sensitivity at a same plane of a fixed focusing type SPECT. Materials and Methods We used D-SPECT as a fixed focusing type SPECT and Cario MD as a rotated parallel type SPECT to comparing each other. We injected $^{99m}Tc(14.8MBq/1cc)$ to 10 capillary tube (diameter=1mm), and we set those line sources a tfield of view of each SPECT. And then we acquired SPECT date, we applied are construction by recommended methods. By using two tomography images, we calculated a full width of half maximum as a resolution and total counts as a sensitivity, and we compared a CV (coefficientofvariation) values between two images as a spatial uniformity. Results In case of D-SPECT, a CV of resolution and sensitivity are 7.45%, 12.34%. In case of Cario MD, an CV of resolution and sensitivity are 12.49%, 21.84% Conclusion As a results, CV of resolution and sensitivity of a fixed focusing type SPECT is 67.75%, 77.00% higher than ones of a rotated parallel type SPECT. It means that a fixed focusing type SPECT is more uniformed, because this new SPECT can reduce a motion blur artifact by rotating detector around body, also all of detector that made by semiconductor arrange forward a special FOV like heart.

A Study on the $NO_2$ gas sensitivity characteristics of the CuTBP(Copper-tetra-tert-buthylphthalocyanine) LB films on the Interdigital Electrode (Interdigital Electrode위에 누적된 CuTBP(Copper-tetra-tert-buthylphthalocyanine) LB막의 $NO_2$ gas sensitivity 특성에 관한 연구)

  • Koo, Ja-Ryong;Lee, Chang-Hee;Kim, Tae-Wan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1713-1715
    • /
    • 1996
  • The $NO_2$ GAS Sensitivity characteristic of CuTBP(Copper-tetra-tert-butylphthalocyanine) LB films were investigated through a study of current-voltage (I-V) characteristics with a variation of number of electrode finger pairs N ($1{\sim}25$). A concentration of 200ppm $NO_2$ gas was used. It was found that a conductance G increases monotonically as the number of interdigital electrode increases, and a Sensitivity, Reproducibility is stable. As far as a current is concerned, the current when N=25 is greater than that when N=1 by 70 or so. It indicates that the number of interdigital electrodes affects the current, sensitivity and stability. We knew that the $NO_2$ gas detector application possibility using a current of N=25.

  • PDF

Influence of decorrelation on phase sensitivity in a Mach-Zehnder interferometer (매개하향변환 과정에서 발생하는 두광자의 상관관계가 Mach-Zehnder 간섭계의 분해능에 미치는 영향)

  • 김헌오;고정훈;박구동;김태수
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • The influences of decorrelation on phase sensitivity are studied with a computer simulation based on the Bayesian theorem, when correlated photons produced by parametric down-conversion are incident on a Mach-Zehnder interferometer. Although the down-converted photons show a perfect correlation in the production process, this degree of correlation may be decreased by reflection, absorption, and scattering during propagation. It is found that this decorrelation results in phase sensitivity degradation, and that the sensitivity is related to the detector quantum efficiency. The results show that when the phase difference between the two paths is smaller the phase sensitivity is better. etter.

  • PDF