• Title/Summary/Keyword: Detection of error data

Search Result 729, Processing Time 0.029 seconds

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Fault Detection in the Semiconductor Etch Process Using the Seasonal Autoregressive Integrated Moving Average Modeling

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria Muhammad;Hong, Sang Jeen
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.429-442
    • /
    • 2014
  • In this paper, we investigated the use of seasonal autoregressive integrated moving average (SARIMA) time series models for fault detection in semiconductor etch equipment data. The derivative dynamic time warping algorithm was employed for the synchronization of data. The models were generated using a set of data from healthy runs, and the established models were compared with the experimental runs to find the faulty runs. It has been shown that the SARIMA modeling for this data can detect faults in the etch tool data from the semiconductor industry with an accuracy of 80% and 90% using the parameter-wise error computation and the step-wise error computation, respectively. We found that SARIMA is useful to detect incipient faults in semiconductor fabrication.

Image Anomaly Detection Using MLP-Mixer (MLP-Mixer를 이용한 이미지 이상탐지)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.104-107
    • /
    • 2022
  • autoencoder deep learning model has excellent ability to restore abnormal data to normal data, so it is not appropriate for anomaly detection. In addition, the Inpainting method, which is a method of restoring hidden data after masking (masking) a part of the data, has a problem in that the restoring ability is poor for noisy images. In this paper, we use a method of modifying and improving the MLP-Mixer model to mask the image at a certain ratio and to reconstruct the image by delivering compressed information of the masked image to the model. After constructing a model learned with normal data from the MVTec AD dataset, a reconstruction error was obtained by inputting normal and abnormal images, respectively, and anomaly detection was performed through this. As a result of the performance evaluation, it was found that the proposed method has superior anomaly detection performance compared to the existing method.

  • PDF

An Image Concealment Algorithm Using Fuzzy Inference (퍼지 추론을 이용한 영상은닉 알고리즘)

  • Kim, Ha-Sik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this paper, we propose the receiver block error detection of the video codec and the image concealment algorithm using fuzzy inference. The proposed error detection and concealment algorithm gets SSD(Summation of Squared Difference) and BMC(Boundary Matching Coefficient) using the temporal and spatial similarity between corresponded blocks in the two successive frames. Proportional constant, ${\alpha}$, for threshold value, TH1 and TH2, is decided after fuzzy data is generated by each parameter. To examine the propriety of the proposed algorithm, random errors are inserted into the QCIF Susie standard image, then the error detection and concealment performance is simulated. To evaluate the efficiency of the algorithm, image quality is evaluated by PSNR for the error detection and concealed image by the existing VLC table and by the proposed method. In the experimental results, the error detection algorithm could detect all of the inserted error, the image quality is improved over 15dB after the error concealment compare to existing error detection algorithm.

  • PDF

Gaze Detection Using Two Neural Networks (다중 신경망을 이용한 사용자의 응시 위치 추출)

  • 박강령;이정준;이동재;김재희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.587-590
    • /
    • 1999
  • Gaze detection is to locate the position on a monitor screen where a user is looking at. We implement it by a computer vision system setting a camera above a monitor, and a user move (rotates and or translates) her face to gaze at a different position on the monitor. Up to now, we have tried several different approaches and among them the Two Neural Network approach shows the best result which is described in this paper (1.7 inch error for test data including facial rotation. 3.1 inch error for test data including facial rotation and translation).

  • PDF

Indoor Position Detection Algorithm Based on Multiple Magnetic Field Map Matching and Importance Weighting Method (다중 자기센서를 이용한 실내 자기 지도 기반 보행자 위치 검출 정확도 향상 알고리즘)

  • Kim, Yong Hun;Kim, Eung Ju;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.471-479
    • /
    • 2019
  • This research proposes a indoor magnetic map matching algorithm that improves the position accuracy by employing multiple magnetic sensors and probabilistic candidate weighting function. Since the magnetic field is easily distorted by the surrounding environment, the distorted magnetic field can be used for position mapping, and multiple sensor configuration is useful to improve mapping accuracy. Nevertheless, the position error is likely to increase because the external magnetic disturbances have repeated pattern in indoor environment and several points have similar magnetic field distortion characteristics. Those errors cause large position error, which reduces the accuracy of the position detection. In order to solve this problem, we propose a method to reduce the error using multiple sensors and likelihood boundaries that uses human walking characteristics. Also, to reduce the maximum position error, we propose an algorithm that weights according to their importance. We performed indoor walking tests to evaluate the performance of the algorithm and analyzed the position detection error rate and maximum distance error. From the results we can confirm that the accuracy of position detection is greatly improved.

우리나라 의용생체공학의 현황과 전망

  • 이충웅
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1989
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Efficient Implementation of Single Error Correction and Double Error Detection Code with Check Bit Pre-computation for Memories

  • Cha, Sanguhn;Yoon, Hongil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.418-425
    • /
    • 2012
  • In this paper, efficient implementation of error correction code (ECC) processing circuits based on single error correction and double error detection (SEC-DED) code with check bit pre-computation is proposed for memories. During the write operation of memory, check bit pre-computation eliminates the overall bits computation required to detect a double error, thereby reducing the complexity of the ECC processing circuits. In order to implement the ECC processing circuits using the check bit pre-computation more efficiently, the proper SEC-DED codes are proposed. The H-matrix of the proposed SEC-DED code is the same as that of the odd-weight-column code during the write operation and is designed by replacing 0's with 1's at the last row of the H-matrix of the odd-weight-column code during the read operation. When compared with a conventional implementation utilizing the odd-weight- column code, the implementation based on the proposed SEC-DED code with check bit pre-computation achieves reductions in the number of gates, latency, and power consumption of the ECC processing circuits by up to 9.3%, 18.4%, and 14.1% for 64 data bits in a word.

The Measurements of Data Accuracy and Error Detection in DEM using GRASS and Arc/Info (GRASS와 Arc/Info를 이용한 DEM 데이터의 정확도와 에러 측정)

  • Cho, Sung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.3-7
    • /
    • 1998
  • The issue of data accuracy brings a different perspective to the issue of GIS modeling, calls into a question the usefulness of data models such as DEM. Accuracy can be determined by randomly checking positional and attribute accuracy within a GIS data layer. With the increasing availability of DEM and the software capable of processing them, it is worthwhile to call attention for data accuracy and error analysis as GIS application depends on the priori established spatial data. The purpose of this paper was to investigate methods for data accuracy measurement and error detection methodology with two types of DEM's: 1 to 24,000 and 1 to 250,000 DEM released by U.S. Geological Survey. Another emphasis was given to the development of methodology for processing DEM's to create Arc/Info and GRASS layers. Data accuracy analysis with DEM was applied to a 250 sq.km area and an error was detected at a scale of 1:24,000 DEM. There were two possible reasons for this error: gross errors and blunders.

Robust Location Error Detection Protocol for Geographic Routing in indoor Wireless Sensor Networks (실내 무선 센서 네트워크에서 위치 기반 라우팅을 위한 위치 에러 감지 프로토콜)

  • Kong, Young-Bae;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.51-53
    • /
    • 2009
  • In wireless sensor networks(WSNs), geographic routing algorithms can enhance the network capacity. However, in the real WSNs, it is difficult for each node to know its accurate physical location. Geographic routing with location error may have serious problems such as disconnected links and delayed data transmission. In this letter, we present an efficient location error detection scheme for geographic routing. The proposed algorithm can efficiently update its incorrect location without additional procedure and finally enhance the performance on the geographic routing with the location errors.

  • PDF