• Title/Summary/Keyword: Detection Space

Search Result 1,634, Processing Time 0.025 seconds

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

Differential space-time coded OFDM using multiple symbol decoding (다중 심벌 디코딩을 이용한 차동 시공간 부호화된 OFDM)

  • Yoo Hang-Youal;Kim Seung-Youal;Kim Chong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.117-125
    • /
    • 2004
  • Space-time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath Rayleigh fading channels. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code perform the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the Unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

Low Complexity Ordered Successive Cancellation Algorithm for Multi-user STBC Systems

  • Le, Van-Hien;Yang, Qing-Hai;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.162-168
    • /
    • 2007
  • This paper proposes two detection algorithms for Multi-user Space Time Block Code systems. The first one is linear detection Gaussian Elimination algorithm, and then it combined with Ordered Successive Cancellation to get better performance. The comparisons between receiver and other popular receivers, including linear receivers are provided. It will be shown that the performance of Gaussian Elimination receiver is similar but more simplicity than linear detection algorithms and performance of Gaussian Elimination Ordered Successive Cancellation superior as compared to other linear detection method.

Image-based Collision Detection on GPU (GPU를 이용한 이미지 기반 충돌검사)

  • Jang, Han-Young;Jung, Taek-Sang;Han, Jung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.812-817
    • /
    • 2006
  • This paper presents an image-space algorithm to real-time collision detection, which is run completely by GPU. For a single object or for multiple objects with no collision, the front and back faces appear alternately along the view direction. However, such alternation is violated when objects collide. Based on these observations, the algorithm has been devised, and the implementation utilizes the state-of-the-art functionalities of GPU such as framebuffer objects(FBO), vertex buffer object(VBO) and occlusion query. The experimental results show the feasibility of GPU-intensive collision detection and its performance gain in real-time applications such as 3D games.

  • PDF

Algorithm for Pairwise Collision Detection and Avoidace in 3-D (3차원 일대일 충돌 감지 및 회피 알리고리듬)

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.996-1002
    • /
    • 2008
  • This paper presents the development of a real-time algorithm for collision detection, collision avoidance and guidance to way-point. Three-dimensional point-mass aircraft models are used. For collision detection, time of closest point of approach(CPA) and distance at CPA are compared to threshold values. For collision avoidance, optimal acceleration input which maximizes the terminal relative distance is calculated based on optimal control theory. For guidance to way-point, proportional navigation guidance, the well-known method, is used. Two scenarios of encounter situation are illustrated to validate performance of proposed algorithm.

An Efficient Detection Algorithm for Quasi-Orthogonal Space-Time Block Code with Four Transmit Antennas

  • Le, Minh-Tuan;Pham, Van-Su;Linh, Mai;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.228-232
    • /
    • 2004
  • This paper proposes an efficient detection algorithm, which is composed of an interference nulling-and cancelling-based detection algorithm and a maximum likelihood (ML) detection algorithm having reduced numbers of signal points to be tested, for the quasi-orthogonal space-time code with four transmit antennas. When high-level modulation schemes are employed, the algorithm enables the quasi-orthogonal code to achieve near ML performance with a significant reduction in the computational load.

A Realization of Applicable GPS/INS Fault Detection Algorithm for UAV using Low Grade Processor (저급 프로세서에 적용 가능한 무인기용 GPS/INS 고장검출 알고리즘 구현)

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Sung, Sang-Kyung;Lee, Young-Jae;Chun, Se-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.781-789
    • /
    • 2010
  • In the GPS/INS integrated system fault detection, algorithm based on a chi-square distribution is commonly used. In this paper, it has been proposed simplified GPS/INS fault detection algorithm that is combined conventional RAIM (Receiver Autonomous Integrity Monitor) and algorithm based on chi-square distribution for UAV using row-grade processor. It use a fault model to verify the proposed algorithm and produced the result.

Analysis and Comparison of Error Detection and Correction Codes for the Memory of STSAT-3 OBC and Mass Data Storage Unit (과학기술위성 3호 탑재 컴퓨터와 대용량 메모리에 적용될 오류 복구 코드의 비교 및 분석)

  • Kim, Byung-Jun;Seo, In-Ho;Kwak, Seong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.417-422
    • /
    • 2010
  • When memory devices are exposed to space environments, they suffer various effects such as SEU(Single Event Upset). Memory systems for space applications are generally equipped with error detection and correction(EDAC) logics against SEUs. In this paper, several error detection and correction codes - RS(10,8) code, (7,4) Hamming code and (16,8) code - are analyzed and compared with each other. Each code is implemented using VHDL and its performances(encoding/decoding speed, required memory size) are compared. Also the failure probability equation of each EDAC code is derived, and the probability value is analyzed for various occurrence rates of SEUs which the STSAT-3 possibly suffers. Finally, the EDAC algorithm for STSAT-3 is determined based on the comparison results.

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.