• Title/Summary/Keyword: Detection Of A Traffic Accident

Search Result 87, Processing Time 0.024 seconds

IoT-based Smart Tunnel Accident Alert System (사물 인터넷 기반의 스마트 터널 사고 경보 시스템)

  • Ki-Ung Min;Seong-Noh Lee;Yoon-Hwa Choi;Yeon-Taek Hong;Chul-Sun Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.753-762
    • /
    • 2024
  • Tunnels have limited evacuation areas, and It is difficult for cars coming from behind to recognize the accident situation in front. Since an accident is very likely to lead to a serious secondary accident, a IoT-based smart tunnel accident warning system was studied to prepare for traffic accidents that occur in tunnels. If the measured values from the flame detection sensor, gas detection sensor, and shock detection sensor in the tunnel exceed the standard, it is judged to be an emergency situation and an alert system is designed to operate. The accident information message was designed to be displayed on the LCD and transmitted to drivers inside and outside the tunnel through a Wi-Fi communication network. A performance test system was established and performance evaluation was performed for several accident scenarios. As a result of the test, it was confirmed that the accident alert system can accurately detect accidents based on given reference values, perform alert procedures, and transmit alert messages to smart phones through Wi-Fi wireless communication. And through this, its effectiveness could be confirmed.

Proposal of a Black Ice Detection Method Using Infrared Camera and YOLO for Reducing of Traffic Accidents (교통사고 경감을 위한 적외선 카메라와 YOLO를 사용한 블랙아이스 탐지 방법 제안)

  • Kim, Hyunggyun;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.416-421
    • /
    • 2021
  • In case of the road slips due to heavy snow and the temperature drops below 0 degrees, black ice which mainly occurs on the road, bridges for vehicles, and tunnel entrances, is not recognized by the driver's view because the image of the asphalt is transmitted through it. So cars' slip situation occurs, which leads to a big traffic accident and a large amount of loss of life and property. This study proposes a method to check the road condition using an infrared camera and to identify black ice through deep learning.

  • PDF

A Study on the Development of Automatic Detection and Warning system while Drowsy Driving (졸음운전의 자동 검출 및 각성 시스템 개발에 관한 연구)

  • Kim, Nam-Gyun;Jeong, Gyeong-Ho;Kim, Beop-Jung
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 1997
  • Driving is a complex vigilance task that includes improper lookout, excessive speed and inattention. The primary objective of this research is to detect driver drowsiness so that the driver can be alerted to an impending traffic accident in performance. We developed the automatic detection and warning system during drowsy driving. A drowsiness detection system must be able to monitor driver status and detect the detrimental changes of a driver performance. Eyeblink has been found to be a reliable factor of drowsiness detection in earlier studies. As an additional parameter, we also considered the yawning which often occurs in a low vigilance state and predicts the drowsy state. We used a computer vision method to extract the eyeblink and yawning in the face image sequences. When the drowsy state was detected, the driver was refreshed by alarming device and menthol scent generator after deciding the warning level by fuzzy logic. For the evaluation of our system, we measured the physiological parameters such as EOG and EEG. The results indicated that it is possible to detect and alert the driver drowsiness temporarily or continuously by using our system.

  • PDF

A Study on Application of Autonomous Traffic Information Based on Artificial Intelligence (인공지능 기반의 자율형 교통정보 응용에 대한 연구)

  • Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.827-833
    • /
    • 2022
  • This study aims to prevent secondary traffic accidents with high severity by overcoming the limitations of existing traffic information collection systems through analysis of traffic information collection detectors and various algorithms used to detect unexpected situations. In other words, this study is meaningful present that analyzing the 'unexpected situation that causes secondary traffic accidents' and 'Existing traffic information collection system' accordingly presenting a solution that can preemptively prevent secondary traffic accidents, intelligent traffic information collection system that enables accurate information collection on all sections of the road. As a result of the experiment, the reliability of data transmission reached 97% based on 95%, the data transmission speed averaged 209ms based on 1000ms, and the network failover time achieved targets of 50sec based on 120sec.

A Study on the Performance Improvement for Automated Accident Detection System (지능형 교통시스템 성능개선에 관한 연구)

  • Choi, Ho-Jin;Kim, Jin-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.137-140
    • /
    • 2010
  • 교통사고의 발생은 교통 혼잡의 주요 원인으로 작용되어 교통사고에 의한 직 간접적 손해비용까지 지출되고 있다. 따라서 교통사고를 사전에 예방하거나 사고가 발생한 후 신속하게 처리할 수 있는 실시간 교통사고 대처 시스템이 요구되고 있다. 즉, 교통사고 자동검지 시스템의 필요성은 가 피해자의 구분에 활용하는 것 이외에 신속한 인명구조와 사고처리 등의 교차로 유고관리가 가능하며, 교통사고로 발생할 수 있는 교통 혼잡을 최소화 할 수 있다. 본 논문에서는 다양한 형태의 충돌 및 추돌 사고를 검지하는 시스템의 성능을 개선하기 위한 것으로 영상 또는 소리라는 매체에 기반을 둔 시스템에서 자동 검지의 한계성을 도출하고 개선하고자 하였다. 테스트 베드를 기반으로 자동검지 실패의 원인을 분석하고 그 원인에 따른 오인식의 문제점을 개선하여 운전자 단독사고로 인하여 차량 추적이 불가능한 경우, 소리 없이 발생한 사고, 야간에 발생한 사고 등의 문제점들을 극복함과 동시에 성능을 개선하는데 그 목적이 있다.

  • PDF

The Multi Knowledge-based Image Retrieval Technology for An Automobile Head Lamp Retrieval (자동차 전조등 검색을 위한 다중지식기반의 영상검색 기법)

  • 이병일;손병환;홍성욱;손성건;최흥국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.27-35
    • /
    • 2002
  • A knowledge-based image retrieval technique is image searching methods using some features from the queried image. The materials in this study are automobile head lamps. The input data is composed of characters and images which have various pattern. The numbers, special symbols, and general letters are under the category of the character. The image informations are made up of the distribution of pixel data, statistical analysis, and state of pattern which are useful for the knowledge data. In this paper, we implemented a retrieval system for the scientific crime detection at traffic accident using the proposed multi knowledge-based image retrieval technique. The values for the multi knowledge-based image features were extracted from color and gray scale each. With this 22 features, we improved the retrieval efficiency about the color information and pattern information. Visual basic, crystal report and MS access DB were used for this application. We anticipate the efficient scientific detection for the traffic accident and the tracking of suspicious vehicle.

  • PDF

A Study on Traffic Situation Recognition System Based on Group Type Zigbee Mesh Network (그룹형 Zigbee Mesh 네트워크 기반 교통상황인지 시스템에 관한 연구)

  • Lim, Ji-Yong;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1723-1728
    • /
    • 2021
  • C-ITS is an intelligent transportation system that can improve transportation convenience and traffic safety by collecting, managing, and providing traffic information between components such as vehicles, road infrastructure, drivers, and pedestrians. In Korea, road infrastructure is being built across the country through the C-ITS project, and various services such as real-time traffic information provision and bus operation management are provided. However, the current state-of-the-art road infrastructure and information linkage system are insufficient to build C-ITS. In this paper, considering the continuity of time in various spatial aspects, we proposed a group-type network-based traffic situation recognition system that can recognize traffic flows and unexpected accidents through information linkage between traffic infrastructures. It is expected that the proposed system can primarily respond to accident detection and warning in the field, and can be utilized as more diverse traffic information services through information linkage with other systems.

A Study on the Assessment of Blind Spot Detection for Road Alignment (도로 선형에 따른 사각지역 감시장치 평가에 관한 연구)

  • Lee, Hongguk;Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Recently, in order to reduce traffic accident related fatalities, increasing number of studies are conducted regarding the vehicle safety enhancement devices. But very few studies about test procedures and requirements for vehicle safety systems are being carried out. Since BSD, as one of the most important safety features, is installed on a new vehicle, its performance test method has to be evaluated. Independent factors irrelevant to the device types including collision position, vehicle speed and closing speed are used to calculate test distance away from the current vehicle. Effect of roadway geometry as radius of curvature is introduced to propose possible misjudgement of following vehicle as adjacent one. The study results would be utilized to enhance the test procedure of BSD performance.

An Evaluation of Occupant Injury Severity Based on Distance Detection Range of AEB in a Real Accident (실사고에서 AEB의 거리감지범위에 따른 승객 상해 심각도 분석)

  • Park, Jiyang;Youn, Younghan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2019
  • AEB (Autonomous Emergency Braking system), a system in which vehicles automatically recognize forward objects or pedestrians and actively brake when forward collisions are expected, has been mandated by NHTSA (National Highway Traffic Safety Administration) and IIHS (Insurance Institute for Highway Safety) for all vehicles sell in the United States since 2022, and AEB research is also actively underway in korea. In this study, it can be confirmed that the passenger injury is reduced according to the AEB detection distance when it is assumed that the AEB is mounted in the actual event generated from KIDAS (Korea New Car Assessment Program) data through various analysis programs.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.