• Title/Summary/Keyword: Detection,

Search Result 36,909, Processing Time 0.055 seconds

Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer (수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘)

  • Yu, Hyeonggeun;Park, Dongjo;Nam, Hyunwoo;Park, Byeonghwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.744-751
    • /
    • 2018
  • In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Sample Preparation and Nucleic Acid-based Technologies for the Detection of Foodborne Pathogens (식중독균의 검출을 위한 시료전처리 및 핵산기반의 분석기술)

  • Lim, Min-Cheol;Kim, Young-Rok
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • There have been great efforts to develop a rapid and sensitive detection method to monitor the presence of pathogenic bacteria in food. While a number of methods have been reported for bacterial detection with a detection limit to a single digit, most of them are suitable only for the bacteria in pure culture or buffered solution. On the other hand, foods are composed of highly complicated matrices containing carbohydrate, fat, protein, fibers, and many other components whose composition varies from one food to the other. Furthermore, many components in food interfere with the downstream detection process, which significantly affect the sensitivity and selectivity of the detection. Therefore, isolating and concentrating the target pathogenic bacteria from food matrices are of importance to enhance the detection power of the system. The present review provides an introduction to the representative sample preparation strategies to isolate target pathogenic bacteria from food sample. We further describe the nucleic acid-based detection methods, such as PCR, real-time PCR, NASBA, RCA, LCR, and LAMP. Nucleic acid-based methods are by far the most sensitive and effective for the detection of a low number of target pathogens whose performance is greatly improved by combining with the sample preparation methods.

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

Power Plant Turbine Blade Anomaly Detection using Deep Neural Network-based Object Detection (깊은 신경망 기반 객체 검출을 이용한 발전 설비 터빈 블레이드 이상 탐지)

  • Yu, Jongmin;Lee, Jangwon;Oh, Hyeontaek;Park, Sang-Ki;Yang, Jinhong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • Due to the increase in the demand for anomaly detection according to the ageing of power generation facilities, the need for developing an anomaly detection method that can provide high-reliability turbine blade anomaly detection performance has been continuously raised. Additionally, the false detection results caused by a human error accelerates the increase of the need. In this paper, we propose an anomaly detection technique for turbine blades in power plants using deep neural networks. Experimental results prove that the proposed technique achieves stable anomaly detection performance while minimizing human factor intervention.

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

A Case Study of the Characteristics of Fire-Detection Signals of IoT-based Fire-Detection System (사례 분석을 통한 IoT 기반 화재탐지시스템의 화재 감지신호 특성)

  • Park, Seung Hwan;Kim, Doo Hyun;Kim, Sung Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.16-23
    • /
    • 2022
  • This study aims to provide a fundamental material for identifying fire and no-fire signals using the detection signal characteristics of IoT-based fire-detection systems. Unlike analog automatic fire-detection equipment, IoT-based fire-detection systems employ wireless digital communication and are connected to a server. If a detection signal exceeds a threshold value, the measured values are saved to a server within seconds. This study was conducted with the detection data saved from seven fire accidents that took place in traditional markets from 2020 to 2021, in addition to 233 fire alarm data that have been saved in the K institute from 2016 to 2020. The saved values demonstrated variable and continuous VC-Signals. Additionally, we discovered that the detection signals of two fire accidents in the K institution had a VC-Signal. In the 233 fire alarms that took place over the span of 5 years, 31% of smoke alarms and 30% of temperature alarms demonstrated a VC-Signal. Therefore, if we selectively recognize VC-Signals as fire signals, we can reduce about 70% of false alarms.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

An Effective Anomaly Detection Approach based on Hybrid Unsupervised Learning Technologies in NIDS

  • Kangseok Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.494-510
    • /
    • 2024
  • Internet users are exposed to sophisticated cyberattacks that intrusion detection systems have difficulty detecting. Therefore, research is increasing on intrusion detection methods that use artificial intelligence technology for detecting novel cyberattacks. Unsupervised learning-based methods are being researched that learn only from normal data and detect abnormal behaviors by finding patterns. This study developed an anomaly-detection method based on unsupervised machines and deep learning for a network intrusion detection system (NIDS). We present a hybrid anomaly detection approach based on unsupervised learning techniques using the autoencoder (AE), Isolation Forest (IF), and Local Outlier Factor (LOF) algorithms. An oversampling approach that increased the detection rate was also examined. A hybrid approach that combined deep learning algorithms and traditional machine learning algorithms was highly effective in setting the thresholds for anomalies without subjective human judgment. It achieved precision and recall rates respectively of 88.2% and 92.8% when combining two AEs, IF, and LOF while using an oversampling approach to learn more unknown normal data improved the detection accuracy. This approach achieved precision and recall rates respectively of 88.2% and 94.6%, further improving the detection accuracy compared with the hybrid method. Therefore, in NIDS the proposed approach provides high reliability for detecting cyberattacks.

A Sensor Fault Detection for Boiler-Turbine Control System (보일러-터빈 제어시스템의 측정기 고장검출)

  • Yoo, Seog Hwan
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • This paper deals with a design of observer based fault detection filter for a boiler-turbine control system. The goal is to present a method for rapid sensor fault detection in order to enhance the reliability of boiler-turbine operation in the thermal power plant. Our fault detection filter can be designed via solutions of linear matrix inequalities. In order to demonstrate the efficacy of our design method, numerical simulations are provided.

Application of robust fault detection for DC motor considering system uncertainty (불확실성을 고려한 DC Motor의 견실한 이상검출)

  • 김대우;유호준;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.856-859
    • /
    • 1997
  • In this paper we treat the application of fault detection method in DC motor having both model mismatch and noise problems. A fault detection method presented by Kwon et al. (1994) for SISO systems has been here experimented. The model mismatch includes here linearization error as well as undermodelling. Comparisons are made with the real plant, DC motor. The experimental result of robust fault detection method is shown to have good performance via with the alternative fault detection method which do not account noise.

  • PDF