• Title/Summary/Keyword: Desktop environment

Search Result 184, Processing Time 0.021 seconds

Development of a WebDAV-based Smartphone Collaborative Application (웹데브 기반의 스마트폰 협업 어플리케이션 개발)

  • Lee, Hong-Chang;Kim, Bo-Hyeon;Lee, Myung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.680-690
    • /
    • 2011
  • To support asynchronous collaboration among remote users, collaborative applications provide collaboration services and environment through virtual workspaces. In general, collaborative applications support collaboration based on desktop-based personal computers, using the features such as resource sharing or asynchronous communication among users. Unfortunately, since those applications mainly run on personal computers, they do not easily support collaborative works in various places. In this paper, we describe the development of smartphone collaborative application which provides effective collaboration facilities like resource sharing through various types of workspaces or group communication, communicating with a WebDAV-based collaboration server. The developed application provides users with high accessibility through multi-touch/touch-slide based user-interfaces in mobile environment. To support effective communication with a collaboration server, we also present a WebDAV-based collaboration library using a collaboration protocol designed to analyze easily the responses from the collaboration server.

A Hybrid QoS Management Model for Distributed Multimedia Services in Ubiquitous Computing (유비쿼터스 컴퓨팅에서 분산 멀티미디어 서비스를 위한 하이브리드 QoS 관리 모델)

  • Jeong, Chang-Won;Lee, Geon-Yeob;Joo, Su-Chong
    • The KIPS Transactions:PartA
    • /
    • v.15A no.2
    • /
    • pp.101-110
    • /
    • 2008
  • Ubiquitous computing has extended the computer system into the whole physical space and has ushered the emergence of more dynamic distributed systems. This environment require unique QoS parameters for various devices, resources and user requirements. In this paper, we propose a new hybrid QoS management model which defines a static-dynamic QoS parameter that is more appropriate to the ubiquitous computing environment. This model consists of the QoS Control Management Module(QoS CMM) in the client side and the Resource QoS Management Module (RQoS MM) in the server side. The RQoS MM deals with the static QoS parameters and the whole QoS control of the distributed control(QoS CMM) in order to minimize server load in cases of multiple communication. Finally, we present the experimental result of our location based application using a graphical user interface that shows the multimedia service execution of selected client device types such as desktop PC, notebook and PDA.

User Authentication Mechanism using Smartphone (스마트폰을 이용한 사용자 인증 메커니즘)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • With the popularization of smart phones and the development of the Internet, many people use smart phones to conduct identity verification procedures. smart phones are easier and faster to authenticate than personal desktop computers. However, as Internet hacking technology and malicious code distribution technology rapidly evolve and attack types become more diverse, authentication methods suitable for mobile environment are required. As authentication methods, there are methods such as possessive-based authentication, knowledge-based authentication, biometric-based authentication, pattern-based authentication, and multi-element authentication. In this paper, we propose a user authentication mechanism that uses collected information as authentication factor using smart phone. Using the proposed authentication mechanism, it is possible to use the smart phone information and environment information of the user as a hidden authentication factor, so that the authentication process can be performed without being exposed to others. We implemented the user authentication system using the proposed authentication mechanism and evaluated the effectiveness based on applicability, convenience, and security.

Bluetooth Tunneling Method for Wireless Docking System Based on Wi-Fi Direct (Wi-Fi Direct 기반 무선 Docking 시스템을 위한 Bluetooth Tunneling 연구)

  • Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.585-594
    • /
    • 2017
  • Wireless Docking system can provide enhanced convenience to user experience of handheld device such as smart phone by using previously deployed peripheral devises such as monitor and keyboard. In this environment, user can easily use the handheld device with variable peripheral devices at any docking system place. This system would be composed of peripherals except host computing device contrarily to previous desktop and laptop environment. For this system, Wi-Fi Alliance has been developing standard technology based on Wi-Fi Direct(Wi-Fi Peer-to-Peer Technical Specifications v1.2, 2010) technology. However, this system can make a problem which may lead to complex connectivity on handheld device due to non-compatible communication interface. To address given problem, we designed a new method of Bluetooth tunneling technology via previous Wi-Fi Direct communication, and evaluated it with experiment results.

N-gram based Language Model for the QWERTY Keyboard Input Errors in a Touch Screen Environment (터치스크린 환경에서 쿼티 자판 오타 교정을 위한 n-gram 언어 모델)

  • Ong, Yoon Gee;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • With the increasing use of touch-enabled mobile devices such as smartphones and tablet PCs, the works are done on desktop computers and smartphones, and tablet PCs perform laptops. However, due to the nature of smart devices that require portability, QWERTY keyboard is densely arranged in a small screen. This is the cause of different typographical errors when using the mechanical QWERTY keyboard. Unlike the mechanical QWERTY keyboard, which has enough space for each button, QWERTY keyboard on the touch screen often has a small area assigned to each button, so that it is often the case that the surrounding buttons are input rather than the button the user intends to press. In this paper, we propose a method to automatically correct the input errors of the QWERTY keyboard in the touch screen environment by using the n-gram language model using the word unigram and the bigram probability.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

A Development of Simulation System based on Scenario for Evaluation of e-Navigation MSP (e-Navigation MSP 평가를 위한 시나리오 기반 시뮬레이션 시스템 개발)

  • Shin, Il-Sik;Hwang, Hun-Gyu;Lee, Jang-Se;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.86-93
    • /
    • 2015
  • Recently, the development of Maritime Service Portfolios (MSPs) for the safe navigation of ship has been discussed internationally. For the successful service of the MSPs, first of all, studies for the standardization about the structure and data structure of MSPs should be preceded. Also, it is necessary to evaluate and assess whether the services are effective for safe navigation, and provided data and portrayal methods are proper. However, because great dangers will be accompanied when untested MSPs about their effectiveness and safety are applied in real ship navigation, it is necessary that effectiveness and safety of the MSPs should be proven under various navigational conditions and environments by simulation. In this paper, we propose a 3D navigation simulation system using desktop PC environment, which is proper for evaluating the effectiveness of MSPs. The system consists of three modules which are simulation scenario editor, 3D visualization of navigational environment and 2D navigational equipment. The scenario editor module provides an environment setting for simulation, such as properties, routes and positions of vessels and aids to navigations. It also provides functions to create a scenario for the simulation to operate. Additionally, the 3D visualization module provides 3D navigational environment which shows interplay between geographical and navigational environment based on the created scenario. The 2D navigational equipment module provides visualization functions of various navigational equipment, shows the interaction between ship's navigational equipment and ship's environment. The simulation scenario, in which various kinds of ships are routing in the port, is created by the developed simulation system, and experimented whether this developed system is appropriate to evaluate and assess the MSPs developed by the International Maritime Organization.

A Study on Web-based operating system (웹 기반 운영체제에 관한 연구)

  • Bae, Yu-Mi;Jung, Sung-Jae;Jang, Rae-Young;Park, Jeong-Su;Soh, Woo-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.674-677
    • /
    • 2012
  • An operating system acts as an intermediary between your computer hardware and computer users to perform, that the user can run the program provides an environment in which. Therefore, the main purpose of the operating system having a computer available for your convenience and to effectively manage computer hardware. The popularization of the people who use computers, improve hardware performance, advent of the internet, popularity of wireless networks, Smartphone and Tablet PC appearance, advent of virtualization technologies and cloud computing, etc. began making changes to the operating system. In particular, cloud computing environments based on server virtualization and using a variety of wired and wireless devices with internet connection, a Web-based operating system was born. In this paper, the definition of a Web-based operating system, types and characteristics, an analysis of the pros and cons, and find out about the future prospects.

  • PDF

A Unit Touch Gesture Model of Performance Time Prediction for Mobile Devices

  • Kim, Damee;Myung, Rohae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.277-291
    • /
    • 2016
  • Objective: The aim of this study is to propose a unit touch gesture model, which would be useful to predict the performance time on mobile devices. Background: When estimating usability based on Model-based Evaluation (MBE) in interfaces, the GOMS model measured 'operators' to predict the execution time in the desktop environment. Therefore, this study used the concept of operator in GOMS for touch gestures. Since the touch gestures are comprised of possible unit touch gestures, these unit touch gestures can predict to performance time with unit touch gestures on mobile devices. Method: In order to extract unit touch gestures, manual movements of subjects were recorded in the 120 fps with pixel coordinates. Touch gestures are classified with 'out of range', 'registration', 'continuation' and 'termination' of gesture. Results: As a results, six unit touch gestures were extracted, which are hold down (H), Release (R), Slip (S), Curved-stroke (Cs), Path-stroke (Ps) and Out of range (Or). The movement time predicted by the unit touch gesture model is not significantly different from the participants' execution time. The measured six unit touch gestures can predict movement time of undefined touch gestures like user-defined gestures. Conclusion: In conclusion, touch gestures could be subdivided into six unit touch gestures. Six unit touch gestures can explain almost all the current touch gestures including user-defined gestures. So, this model provided in this study has a high predictive power. The model presented in the study could be utilized to predict the performance time of touch gestures. Application: The unit touch gestures could be simply added up to predict the performance time without measuring the performance time of a new gesture.

The Development of Qplus-P Window Manager for Small Internet Appliance (소형 정보가전 기기용 QPlus-P 윈도우 매니저 개발)

  • Kim, Do-Hyung;Kang, Woo-Cheol;Jung, Young-Jun;Kim, Seung-Woo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.195-202
    • /
    • 2004
  • This paper describes the development of a window manager based on the real time operating system, Qplus-p, for small internet appliance. Current window managers for small internet appliance are originally developed for desktop environment and then modified for embedded systems. So they have inadequate functions for small internet appliances and do not perfectly support Hangul. The Qplus-P window manager adds the Hangul processing function to Matchbox window manager, a royalty-free window manager for small Internet appliance and provides a new Hangul input method called Amikey. Input mode can be changed automatically from Hangul mode to English mode and vice versa by Amikey. In addition, Qplus-P window manager provides Hangul supported basic applications such as web browser, e-mail client, MP3 player. We developed the window manager by porting open sources to target system after adding Hangul supported functions to them.