• 제목/요약/키워드: Desired response

검색결과 513건 처리시간 0.024초

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin;Nguyen, Minh Trang
    • IMMUNE NETWORK
    • /
    • 제15권2호
    • /
    • pp.51-57
    • /
    • 2015
  • Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 (Active control for Seismic Response Reduction using Modal-fuzzy Approach)

  • Choi, Kang-Min;Cho, Sang-Won;Oh, Ju-Won;Lee, In-Won
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.409-416
    • /
    • 2004
  • An active modal-fuzzy control method using hydraulic actuators is presented for seismic response reduction. In the proposed control system, a new fuzzy controller designed in the modal space produces the desired active control force. This type controller has all advantages of the fuzzy control algorithm and modal approach. Since it is very difficult to select input variables used in fuzzy controller among an amount of state variables in the active fuzzy control system the presented algorithm adopts the modal control algorithm which is able to consider more easily information of all state variables in civil structures that are usually dominated by first few modes. In other words, all information of the whole structure can be considered in the control algorithm evaluated to reduce seismic responses and it can be efficient for especially civil structures. In addition, the presented algorithm is expected to magnify utility and performance caused by efficiency that the fuzzy algorithm can handle complex model more easily. An active modal-fuzzy control scheme is applied together with a Kalman filter and a low-pass filter to be applicable to real civil structures. A Kalman filter is considered to estimate modal states and a low-pass filter was used to eliminate spillover problem. The results of the numerical simulations far a wide amplitude range o f loading conditions and for historic earthquakes having various frequency components show that the proposed active modal-fuzzy control system can be beneficial in reducing seismic responses of civil structures.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Monetary Policy Transmission during Multiple Indicator Regime: A Case of India

  • SETHI, Madhvi;BABY, Saina;DAR, Vandita
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제6권3호
    • /
    • pp.103-113
    • /
    • 2019
  • The effectiveness of monetary policy critically depends upon how well the transmission mechanism functions, so that the desired impact on output and inflation is achieved. The purpose of this paper is to study the transmission mechanism of monetary policy by analyzing the impact on inflation and output during multiple indicator regime (1998-99 to 2014) in an emerging economy-India. The Inflation Targeting Regime is also briefly outlined alongwith the impact on output and inflation. Using quarterly data for the period 1997 to 2017, the paper uses weighted average call money market rate as a proxy for the policy rate and evaluates the strength of the interest rate channel. We use a conventional Structural vector auto regression (SVAR) methodology to evaluate the efficacy and show the impluse response functions. Our results find that changes in the policy rate impact output growth steeply with a lag of about two quarters and the impact on inflation is maximized after three quarters. The study concludes that the monetary policy in India has a significant impact on output and inflation in the short-to-medium-run. After the policy shock, the fall in the output growth rate is of greater magnitude than the fall in inflation.

신경망 전치보상기를 갖는 확대 I-PD제어기의 설계 (The design of the expanded I-PD Controller with the Neuro-precompensator)

  • 하홍곤
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.619-625
    • /
    • 2000
  • 많은 제어기법들이 이산시간영역제어계의 제어성능을 개선시키기 위해서 제안되고 있다. 위치제어계에서 일반적으로 제어기의 출력이 제어대상의 입력으로 사용된다. 그러나 불필요한 잡음이 제어기의 출력에 포함된다. 그러므로 이러한 잡음을 제거하기 위해서 전치보상기를 사용할 필요가 있다. 본 논문에서 전치보상기를 갖는 확대 I-PD 제어계를 구성하였고 이 전치보상기와 I-PD 제어기를 신경망으로 설계하였다. 그리고 전치보상기와 I-PD제어기의 계수들이 계의 응답특성들이 어떤 조건 하에서 변할 때 계의 희망하는 응답이 되도록 자동적으로 조정되도록 하였다.

  • PDF

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

수급식탈곡기(穗給式脱穀機)의 공급율(供給率) 제어(制御)(II) -제어시스템 설계 및 시뮬레이션- (Feed Rate Control for the Head-Feed Thresher)

  • 최영수;정창주
    • Journal of Biosystems Engineering
    • /
    • 제15권2호
    • /
    • pp.110-122
    • /
    • 1990
  • This study was undertaken to develop the feed rate control system for the head feed thresher by making use of the microprocessor and to evaluate the response of the system to a various threshing conditions. The control unit was composed of one-board microcomputer. The speed of the wet-paddy feeding chain was controlled by dc moter with PI controller. It was used the adaptive control method to maintain the constant feed rate regardless of the fed rice varieties. The sliding type potentiometer was used as the feed rate sensor, which was attached on the sheaf-holding apparatus. The mathematical models of the system components were derived and computer simulation was developed for investigating the parameters affecting on control performance and for estimating the response of the system. A one-board microcomputer-based feed rate control system developed in this study was properly functioned and assessed as adequate for the feed rate control system of the head feed thresher. Based on the simulation for the bundle feed, it was anticipated that the lower setting value of the cylinder speed(RL) is to be set higher than the limiting operational speed. In addition, the higher setting value of the cylinder speed(RH) is to be set lower than the limiting cylinder speed for threshing. The computer simulation for the continuous spread feed showed that the lower the setting value of straw layer thickness(LL) was set, the shorter the correction time. However, if too low LL may be established, the feed rate could not reach to its desired rate.

  • PDF

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

LabVIEW를 이용한 무인항공기용 소형 터보제트 엔진의 Fuzzy-PID 제어기 설계 (Design of Fuzzy-PID Controller for Turbojet Engine of UAV Using LabVIEW)

  • 신행철;지민석
    • 한국항행학회논문지
    • /
    • 제20권3호
    • /
    • pp.190-195
    • /
    • 2016
  • 본 논문에서는 무인항공기용 소형 터보제트엔진에 대해 압축기 서지현상 및 화염소실을 방지하면서 과도응답 특성을 개선하는 제어기를 설계하였다. 터보제트 엔진의 가 감속 시 서지현상과 flame-out 현상을 방지하기 위해 연료 유량 제어 입력을 Fuzzy-PID 제어기로 생성하고 신속하고 안전하게 원하는 속도로 수렴할 수 있도록 제어기 설계한다. LabVIEW을 이용한 시뮬레이션을 통해 PID와의 응답특성 비교 분석 및 신속하고 안전하게 원하는 속도로 수렴하는 제어 성능을 확인하였다.