Browse > Article
http://dx.doi.org/10.4110/in.2015.15.2.51

Recent Advances of Vaccine Adjuvants for Infectious Diseases  

Lee, Sujin (Department of Pediatrics, Emory University, School of Medicine)
Nguyen, Minh Trang (Department of Pediatrics, Emory University, School of Medicine)
Publication Information
IMMUNE NETWORK / v.15, no.2, 2015 , pp. 51-57 More about this Journal
Abstract
Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.
Keywords
Vaccine; Adjuvant; Infectious disease; Innate immunity; Adaptive immunity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Descamps, D., K. Hardt, B. Spiessens, P. Izurieta, T. Verstraeten, T. Breuer, and G. Dubin. 2009. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum. Vaccin. 5: 332-340.   DOI
2 Beran, J. 2008. Safety and immunogenicity of a new hepatitis B vaccine for the protection of patients with renal insufficiency including pre-haemodialysis and haemodialysis patients. Expert Opin. Biol. Ther. 8: 235-247.   DOI
3 Didierlaurent, A. M., S. Morel, L. Lockman, S. L. Giannini, M. Bisteau, H. Carlsen, A. Kielland, O. Vosters, N. Vanderheyde, F. Schiavetti, D. Larocque, M. M. Van, and N. Garcon. 2009. AS04, an aluminum salt- and TLR4 agonist- based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183: 6186-6197.   DOI
4 Krieg, A. M. 2006. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5: 471-484.   DOI
5 Eng, N. F., N. Bhardwaj, R. Mulligan, and F. az-Mitoma. 2013. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV review. Hum. Vaccin. Immunother. 9: 1661-1672.   DOI
6 Hasegawa, H., T. Ichinohe, A. Ainai, S. Tamura, and T. Kurata. 2009. Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Ther. Clin. Risk Manag. 5: 125-132.
7 Duthie, M. S., H. P. Windish, C. B. Fox, and S. G. Reed. 2011. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239: 178-196.   DOI
8 Turley, C. B., R. E. Rupp, C. Johnson, D. N. Taylor, J. Wolfson, L. Tussey, U. Kavita, L. Stanberry, and A. Shaw. 2011. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 29: 5145-5152.   DOI
9 Morein, B., B. Sundquist, S. Hoglund, K. Dalsgaard, and A. Osterhaus. 1984. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308: 457-460.   DOI
10 Garcia, A., and J. B. De Sanctis. 2014. An overview of adjuvant formulations and delivery systems. APMIS 122: 257-267.   DOI
11 Cummings, J. F., M. D. Spring, R. J. Schwenk, C. F. Ockenhouse, K. E. Kester, M. E. Polhemus, D. S. Walsh, I. K. Yoon, C. Prosperi, L. Y. Juompan, D. E. Lanar, U. Krzych, B. T. Hall, L. A. Ware, V. A. Stewart, J. Williams, M. Dowler, R. K. Nielsen, C. J. Hillier, B. K. Giersing, F. Dubovsky, E. Malkin, K. Tucker, M. C. Dubois, J. D. Cohen, W. R. Ballou, and D. G. Heppner, Jr. 2010. Recombinant Liver Stage Antigen-1 (LSA-1) formulated with AS01 or AS02 is safe, elicits high titer antibody and induces IFN-gamma/IL-2 $CD4^+$ T cells but does not protect against experimental Plasmodium falciparum infection. Vaccine 28: 5135-5144.   DOI
12 De, G. E., E. Tritto, and R. Rappuoli. 2008. Alum adjuvanticity: unraveling a century old mystery. Eur. J. Immunol. 38: 2068-2071.   DOI
13 O'Hagan, D. T., G. S. Ott, and N. G. Van. 1997. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol. Med. Today 3: 69-75.   DOI
14 Garcon, N., D. W. Vaughn, and A. M. Didierlaurent. 2012. Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 11: 349-366.   DOI
15 Atmar, R. L., and W. A. Keitel. 2009. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 333: 323-344.
16 Schwendener, R. A. 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2: 159-182.   DOI
17 Leroux-Roels, G. 2010. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28 Suppl 3: C25-C36.   DOI
18 Moser, C., M. Muller, M. D. Kaeser, U. Weydemann, and M. Amacker. 2013. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines 12: 779-791.   DOI
19 Garcon, N., M. Wettendorff, and M. M. Van. 2011. Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opin. Biol. Ther. 11: 667-677.   DOI
20 Fauci, A. S. 2001. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32: 675-685.   DOI
21 WHO Ebola Response Team. 2014. Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371: 1481-1495.   DOI
22 Riese, P., K. Schulze, T. Ebensen, B. Prochnow, and C. A. Guzman. 2013. Vaccine adjuvants: key tools for innovative vaccine design. Curr. Top. Med. Chem. 13: 2562-2580.   DOI
23 Baxter D. 2007. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond). 57: 552-556.   DOI
24 Reed, S. G., M. T. Orr, and C. B. Fox. 2013. Key roles of adjuvants in modern vaccines. Nat. Med. 19: 1597-1608.   DOI
25 Glenny, A. T., C. G. Pope, H. Waddington, and U. Wallace. 1926. Immunological notes. XVII-XXIV. J. Pathol. Bacteriol. 29: 31-40.   DOI
26 Brewer, J. M. 2006. (How) do aluminium adjuvants work?. Immunol. Lett. 102: 10-15.   DOI
27 Lindblad, E. B. 2004. Aluminium adjuvants--in retrospect and prospect. Vaccine 22: 3658-3668.   DOI
28 Awate, S., L. A. Babiuk, and G. Mutwiri. 2013. Mechanisms of action of adjuvants. Front. Immunol. 4: 114.
29 Glenny, A. T., and C. G. Pope. 1925. The antigenic effect of intravenous injection of diphtheria toxin. J. Pathol. Bacteriol. 28: 273-278.   DOI
30 Hutchison, S., R. A. Benson, V. B. Gibson, A. H. Pollock, P. Garside, and J. M. Brewer. 2012. Antigen depot is not required for alum adjuvanticity. FASEB J. 26: 1272-1279.   DOI
31 Marrack, P., A. S. McKee, and M. W. Munks. 2009. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9: 287-293.   DOI
32 Reed, S. G., S. Bertholet, R. N. Coler, and M. Friede. 2009. New horizons in adjuvants for vaccine development. Trends Immunol. 30: 23-32.   DOI
33 Gupta, R. K. 1998. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 32: 155-172.   DOI
34 O'Hagan, D. T., G. S. Ott, E. De Gregorio, and A. Seubert. 2012. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30: 4341-4348.   DOI
35 Podda, A. 2001. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19: 2673-2680.   DOI
36 Gasparini, R., F. Schioppa, M. Lattanzi, M. Barone, D. Casula, M. Pellegrini, K. Veitch, and N. Gaitatzis. 2010. Impact of prior or concomitant seasonal influenza vaccination on MF59-adjuvanted H1N1v vaccine (Focetria) in adult and elderly subjects. Int. J. Clin. Pract. 64: 432-438.   DOI
37 O'Hagan, D. T., G. S. Ott, G. V. Nest, R. Rappuoli, and G. D. Giudice. 2013. The history of MF59($^{(R)}$) adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12: 13-30.   DOI
38 Almeida, J. D., D. C. Edwards, C. M. Brand, and T. D. Heath. 1975. Formation of virosomes from influenza subunits and liposomes. Lancet 2: 899-901.
39 Morel, S., A. Didierlaurent, P. Bourguignon, S. Delhaye, B. Baras, V. Jacob, C. Planty, A. Elouahabi, P. Harvengt, H. Carlsen, A. Kielland, P. Chomez, N. Garcon, and M. M. Van. 2011. Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29: 2461-2473.   DOI
40 Brito, L. A., and D. T. O'Hagan. 2014. Designing and building the next generation of improved vaccine adjuvants. J. Control Release 190: 563-579.   DOI
41 Moser, C., M. Amacker, A. R. Kammer, S. Rasi, N. Westerfeld, and R. Zurbriggen. 2007. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev. Vaccines 6: 711-721.   DOI
42 Cusi, M. G. 2006. Applications of influenza virosomes as a delivery system. Hum. Vaccin. 2: 1-7.   DOI
43 Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145.   DOI
44 Coffman, R. L., A. Sher, and R. A. Seder. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity 33: 492-503.   DOI
45 Gustafson, G. L., and M. J. Rhodes. 1992. Bacterial cell wall products as adjuvants: early interferon gamma as a marker for adjuvants that enhance protective immunity. Res. Immunol. 143: 483-488.   DOI
46 Garcon, N., P. Chomez, and M. M. Van. 2007. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 6: 723-739.   DOI
47 Calabro, S., M. Tortoli, B. C. Baudner, A. Pacitto, M. Cortese, D. T. O'Hagan, G. E. De, A. Seubert, and A. Wack. 2011. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29: 1812-1823.   DOI
48 Taylor, D. N., J. J. Treanor, E. A. Sheldon, C. Johnson, S. Umlauf, L. Song, U. Kavita, G. Liu, L. Tussey, K. Ozer, T. Hofstaetter, and A. Shaw. 2012. Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response. Vaccine 30: 5761-5769.   DOI
49 Oleszycka, E., and E. C. Lavelle. 2014. Immunomodulatory properties of the vaccine adjuvant alum. Curr. Opin. Immunol. 28: 1-5.   DOI
50 Chan, E. H., T. F. Brewer, L. C. Madoff, M. P. Pollack, A. L. Sonricker, M. Keller, C. C. Freifeld, M. Blench, A. Mawudeku, and J. S. Brownstein. 2010. Global capacity for emerging infectious disease detection. Proc. Natl. Acad. Sci. U. S. A. 107: 21701-21706.   DOI
51 Lovgren, B. K., B. Morein, and A. D. Osterhaus. 2011. ISCOM technology-based Matrix $M^{TM}$ adjuvant: success in future vaccines relies on formulation. Expert Rev. Vaccines 10: 401-403.   DOI