DOI QR코드

DOI QR Code

Recent Advances of Vaccine Adjuvants for Infectious Diseases

  • Lee, Sujin (Department of Pediatrics, Emory University, School of Medicine) ;
  • Nguyen, Minh Trang (Department of Pediatrics, Emory University, School of Medicine)
  • Received : 2015.02.10
  • Accepted : 2015.04.02
  • Published : 2015.04.30

Abstract

Vaccines are the most effective and cost-efficient method for preventing diseases caused by infectious pathogens. Despite the great success of vaccines, development of safe and strong vaccines is still required for emerging new pathogens, re-emerging old pathogens, and in order to improve the inadequate protection conferred by existing vaccines. One of the most important strategies for the development of effective new vaccines is the selection and usage of a suitable adjuvant. Immunologic adjuvants are essential for enhancing vaccine potency by improvement of the humoral and/or cell-mediated immune response to vaccine antigens. Thus, formulation of vaccines with appropriate adjuvants is an attractive approach towards eliciting protective and long-lasting immunity in humans. However, only a limited number of adjuvants is licensed for human vaccines due to concerns about safety and toxicity. We summarize current knowledge about the potential benefits of adjuvants, the characteristics of adjuvants and the mechanisms of adjuvants in human vaccines. Adjuvants have diverse modes of action and should be selected for use on the basis of the type of immune response that is desired for a particular vaccine. Better understanding of current adjuvants will help exploring new adjuvant formulations and facilitate rational design of vaccines against infectious diseases.

Keywords

References

  1. Fauci, A. S. 2001. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32: 675-685. https://doi.org/10.1086/319235
  2. Leroux-Roels, G. 2010. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28 Suppl 3: C25-C36. https://doi.org/10.1016/j.vaccine.2010.07.021
  3. Chan, E. H., T. F. Brewer, L. C. Madoff, M. P. Pollack, A. L. Sonricker, M. Keller, C. C. Freifeld, M. Blench, A. Mawudeku, and J. S. Brownstein. 2010. Global capacity for emerging infectious disease detection. Proc. Natl. Acad. Sci. U. S. A. 107: 21701-21706. https://doi.org/10.1073/pnas.1006219107
  4. WHO Ebola Response Team. 2014. Ebola virus disease in West Africa--the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371: 1481-1495. https://doi.org/10.1056/NEJMoa1411100
  5. Riese, P., K. Schulze, T. Ebensen, B. Prochnow, and C. A. Guzman. 2013. Vaccine adjuvants: key tools for innovative vaccine design. Curr. Top. Med. Chem. 13: 2562-2580. https://doi.org/10.2174/15680266113136660183
  6. Baxter D. 2007. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. (Lond). 57: 552-556. https://doi.org/10.1093/occmed/kqm110
  7. Reed, S. G., M. T. Orr, and C. B. Fox. 2013. Key roles of adjuvants in modern vaccines. Nat. Med. 19: 1597-1608. https://doi.org/10.1038/nm.3409
  8. Glenny, A. T., C. G. Pope, H. Waddington, and U. Wallace. 1926. Immunological notes. XVII-XXIV. J. Pathol. Bacteriol. 29: 31-40. https://doi.org/10.1002/path.1700290106
  9. Brewer, J. M. 2006. (How) do aluminium adjuvants work?. Immunol. Lett. 102: 10-15. https://doi.org/10.1016/j.imlet.2005.08.002
  10. Lindblad, E. B. 2004. Aluminium adjuvants--in retrospect and prospect. Vaccine 22: 3658-3668. https://doi.org/10.1016/j.vaccine.2004.03.032
  11. Glenny, A. T., and C. G. Pope. 1925. The antigenic effect of intravenous injection of diphtheria toxin. J. Pathol. Bacteriol. 28: 273-278. https://doi.org/10.1002/path.1700280217
  12. Hutchison, S., R. A. Benson, V. B. Gibson, A. H. Pollock, P. Garside, and J. M. Brewer. 2012. Antigen depot is not required for alum adjuvanticity. FASEB J. 26: 1272-1279. https://doi.org/10.1096/fj.11-184556
  13. Awate, S., L. A. Babiuk, and G. Mutwiri. 2013. Mechanisms of action of adjuvants. Front. Immunol. 4: 114.
  14. Marrack, P., A. S. McKee, and M. W. Munks. 2009. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 9: 287-293. https://doi.org/10.1038/nri2510
  15. Reed, S. G., S. Bertholet, R. N. Coler, and M. Friede. 2009. New horizons in adjuvants for vaccine development. Trends Immunol. 30: 23-32. https://doi.org/10.1016/j.it.2008.09.006
  16. Gupta, R. K. 1998. Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 32: 155-172. https://doi.org/10.1016/S0169-409X(98)00008-8
  17. O'Hagan, D. T., G. S. Ott, E. De Gregorio, and A. Seubert. 2012. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30: 4341-4348. https://doi.org/10.1016/j.vaccine.2011.09.061
  18. Podda, A. 2001. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19: 2673-2680. https://doi.org/10.1016/S0264-410X(00)00499-0
  19. Gasparini, R., F. Schioppa, M. Lattanzi, M. Barone, D. Casula, M. Pellegrini, K. Veitch, and N. Gaitatzis. 2010. Impact of prior or concomitant seasonal influenza vaccination on MF59-adjuvanted H1N1v vaccine (Focetria) in adult and elderly subjects. Int. J. Clin. Pract. 64: 432-438. https://doi.org/10.1111/j.1742-1241.2009.02309.x
  20. Calabro, S., M. Tortoli, B. C. Baudner, A. Pacitto, M. Cortese, D. T. O'Hagan, G. E. De, A. Seubert, and A. Wack. 2011. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29: 1812-1823. https://doi.org/10.1016/j.vaccine.2010.12.090
  21. O'Hagan, D. T., G. S. Ott, G. V. Nest, R. Rappuoli, and G. D. Giudice. 2013. The history of MF59($^{(R)}$) adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12: 13-30. https://doi.org/10.1586/erv.12.140
  22. Morel, S., A. Didierlaurent, P. Bourguignon, S. Delhaye, B. Baras, V. Jacob, C. Planty, A. Elouahabi, P. Harvengt, H. Carlsen, A. Kielland, P. Chomez, N. Garcon, and M. M. Van. 2011. Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29: 2461-2473. https://doi.org/10.1016/j.vaccine.2011.01.011
  23. Brito, L. A., and D. T. O'Hagan. 2014. Designing and building the next generation of improved vaccine adjuvants. J. Control Release 190: 563-579. https://doi.org/10.1016/j.jconrel.2014.06.027
  24. Almeida, J. D., D. C. Edwards, C. M. Brand, and T. D. Heath. 1975. Formation of virosomes from influenza subunits and liposomes. Lancet 2: 899-901.
  25. Moser, C., M. Amacker, A. R. Kammer, S. Rasi, N. Westerfeld, and R. Zurbriggen. 2007. Influenza virosomes as a combined vaccine carrier and adjuvant system for prophylactic and therapeutic immunizations. Expert Rev. Vaccines 6: 711-721. https://doi.org/10.1586/14760584.6.5.711
  26. Cusi, M. G. 2006. Applications of influenza virosomes as a delivery system. Hum. Vaccin. 2: 1-7. https://doi.org/10.4161/hv.2.1.2494
  27. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145. https://doi.org/10.1038/35100529
  28. Coffman, R. L., A. Sher, and R. A. Seder. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity 33: 492-503. https://doi.org/10.1016/j.immuni.2010.10.002
  29. Gustafson, G. L., and M. J. Rhodes. 1992. Bacterial cell wall products as adjuvants: early interferon gamma as a marker for adjuvants that enhance protective immunity. Res. Immunol. 143: 483-488. https://doi.org/10.1016/0923-2494(92)80058-S
  30. Garcon, N., P. Chomez, and M. M. Van. 2007. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 6: 723-739. https://doi.org/10.1586/14760584.6.5.723
  31. Descamps, D., K. Hardt, B. Spiessens, P. Izurieta, T. Verstraeten, T. Breuer, and G. Dubin. 2009. Safety of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for cervical cancer prevention: a pooled analysis of 11 clinical trials. Hum. Vaccin. 5: 332-340. https://doi.org/10.4161/hv.5.5.7211
  32. Beran, J. 2008. Safety and immunogenicity of a new hepatitis B vaccine for the protection of patients with renal insufficiency including pre-haemodialysis and haemodialysis patients. Expert Opin. Biol. Ther. 8: 235-247. https://doi.org/10.1517/14712598.8.2.235
  33. Didierlaurent, A. M., S. Morel, L. Lockman, S. L. Giannini, M. Bisteau, H. Carlsen, A. Kielland, O. Vosters, N. Vanderheyde, F. Schiavetti, D. Larocque, M. M. Van, and N. Garcon. 2009. AS04, an aluminum salt- and TLR4 agonist- based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183: 6186-6197. https://doi.org/10.4049/jimmunol.0901474
  34. Krieg, A. M. 2006. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5: 471-484. https://doi.org/10.1038/nrd2059
  35. Eng, N. F., N. Bhardwaj, R. Mulligan, and F. az-Mitoma. 2013. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV review. Hum. Vaccin. Immunother. 9: 1661-1672. https://doi.org/10.4161/hv.24715
  36. Hasegawa, H., T. Ichinohe, A. Ainai, S. Tamura, and T. Kurata. 2009. Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Ther. Clin. Risk Manag. 5: 125-132.
  37. Duthie, M. S., H. P. Windish, C. B. Fox, and S. G. Reed. 2011. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239: 178-196. https://doi.org/10.1111/j.1600-065X.2010.00978.x
  38. Taylor, D. N., J. J. Treanor, E. A. Sheldon, C. Johnson, S. Umlauf, L. Song, U. Kavita, G. Liu, L. Tussey, K. Ozer, T. Hofstaetter, and A. Shaw. 2012. Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response. Vaccine 30: 5761-5769. https://doi.org/10.1016/j.vaccine.2012.06.086
  39. Turley, C. B., R. E. Rupp, C. Johnson, D. N. Taylor, J. Wolfson, L. Tussey, U. Kavita, L. Stanberry, and A. Shaw. 2011. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 29: 5145-5152. https://doi.org/10.1016/j.vaccine.2011.05.041
  40. Morein, B., B. Sundquist, S. Hoglund, K. Dalsgaard, and A. Osterhaus. 1984. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308: 457-460. https://doi.org/10.1038/308457a0
  41. Garcia, A., and J. B. De Sanctis. 2014. An overview of adjuvant formulations and delivery systems. APMIS 122: 257-267. https://doi.org/10.1111/apm.12143
  42. Lovgren, B. K., B. Morein, and A. D. Osterhaus. 2011. ISCOM technology-based Matrix $M^{TM}$ adjuvant: success in future vaccines relies on formulation. Expert Rev. Vaccines 10: 401-403. https://doi.org/10.1586/erv.11.25
  43. Cummings, J. F., M. D. Spring, R. J. Schwenk, C. F. Ockenhouse, K. E. Kester, M. E. Polhemus, D. S. Walsh, I. K. Yoon, C. Prosperi, L. Y. Juompan, D. E. Lanar, U. Krzych, B. T. Hall, L. A. Ware, V. A. Stewart, J. Williams, M. Dowler, R. K. Nielsen, C. J. Hillier, B. K. Giersing, F. Dubovsky, E. Malkin, K. Tucker, M. C. Dubois, J. D. Cohen, W. R. Ballou, and D. G. Heppner, Jr. 2010. Recombinant Liver Stage Antigen-1 (LSA-1) formulated with AS01 or AS02 is safe, elicits high titer antibody and induces IFN-gamma/IL-2 $CD4^+$ T cells but does not protect against experimental Plasmodium falciparum infection. Vaccine 28: 5135-5144. https://doi.org/10.1016/j.vaccine.2009.08.046
  44. Oleszycka, E., and E. C. Lavelle. 2014. Immunomodulatory properties of the vaccine adjuvant alum. Curr. Opin. Immunol. 28: 1-5. https://doi.org/10.1016/j.coi.2013.12.007
  45. De, G. E., E. Tritto, and R. Rappuoli. 2008. Alum adjuvanticity: unraveling a century old mystery. Eur. J. Immunol. 38: 2068-2071. https://doi.org/10.1002/eji.200838648
  46. O'Hagan, D. T., G. S. Ott, and N. G. Van. 1997. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol. Med. Today 3: 69-75. https://doi.org/10.1016/S1357-4310(96)10058-7
  47. Garcon, N., D. W. Vaughn, and A. M. Didierlaurent. 2012. Development and evaluation of AS03, an Adjuvant System containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev. Vaccines 11: 349-366. https://doi.org/10.1586/erv.11.192
  48. Atmar, R. L., and W. A. Keitel. 2009. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 333: 323-344.
  49. Schwendener, R. A. 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2: 159-182. https://doi.org/10.1177/2051013614541440
  50. Moser, C., M. Muller, M. D. Kaeser, U. Weydemann, and M. Amacker. 2013. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines 12: 779-791. https://doi.org/10.1586/14760584.2013.811195
  51. Garcon, N., M. Wettendorff, and M. M. Van. 2011. Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opin. Biol. Ther. 11: 667-677. https://doi.org/10.1517/14712598.2011.573624

Cited by

  1. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response vol.4, pp.None, 2015, https://doi.org/10.12688/f1000research.7093.2
  2. QS-21: A Potent Vaccine Adjuvant vol.3, pp.4, 2015, https://doi.org/10.4172/2329-6836.1000e113
  3. Communicate, educate: tackling misconceptions to boost vaccine uptake vol.10, pp.9, 2015, https://doi.org/10.2217/fvl.15.74
  4. In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates vol.5, pp.1, 2016, https://doi.org/10.1007/s13721-016-0138-1
  5. Prospects for the use of sulfated polysaccharides from brown seaweeds as vaccine adjuvants vol.42, pp.6, 2016, https://doi.org/10.1134/s1063074016060055
  6. Adjuvants: Classification, Modus Operandi , and Licensing vol.2016, pp.None, 2015, https://doi.org/10.1155/2016/1459394
  7. HIV Envelope Trimer Specific Immune Response Is Influenced by Different Adjuvant Formulations and Heterologous Prime-Boost vol.11, pp.1, 2015, https://doi.org/10.1371/journal.pone.0145637
  8. Novel platform technology for modular mucosal vaccine that protects against streptococcus vol.6, pp.None, 2015, https://doi.org/10.1038/srep39274
  9. Influenza infection in human host: challenges in making a better influenza vaccine vol.14, pp.4, 2015, https://doi.org/10.1586/14787210.2016.1155450
  10. Anti-Infectious Human Vaccination in Historical Perspective vol.35, pp.3, 2015, https://doi.org/10.3109/08830185.2015.1082177
  11. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design vol.15, pp.8, 2015, https://doi.org/10.1586/14760584.2016.1158108
  12. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis vol.15, pp.8, 2015, https://doi.org/10.1586/14760584.2016.1161510
  13. Conjugation with an Inulin–Chitosan Adjuvant Markedly Improves the Immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 Fusion Protein vol.13, pp.11, 2015, https://doi.org/10.1021/acs.molpharmaceut.6b00138
  14. Host‐ and pathogen‐derived adjuvant coatings on protein nanoparticle vaccines vol.2, pp.1, 2017, https://doi.org/10.1002/btm2.10052
  15. Vaccine adjuvants: smart components to boost the immune system vol.40, pp.11, 2015, https://doi.org/10.1007/s12272-017-0969-z
  16. A novel immunization approach for dengue infection based on conserved T cell epitopes formulated in calcium phosphate nanoparticles vol.13, pp.11, 2015, https://doi.org/10.1080/21645515.2017.1369639
  17. The Use of Xanthan Gum as Vaccine Adjuvant: An Evaluation of Immunostimulatory Potential in BALB/c Mice and Cytotoxicity In Vitro vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/3925024
  18. Innovative Approaches to Improve Anti-Infective Vaccine Efficacy vol.57, pp.None, 2015, https://doi.org/10.1146/annurev-pharmtox-010716-104718
  19. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection vol.16, pp.5, 2015, https://doi.org/10.1080/14760584.2017.1295853
  20. A trivalent, inactivated influenza vaccine (Vaxigrip®): summary of almost 50 years of experience and more than 1.8 billion doses distributed in over 120 countries vol.16, pp.6, 2017, https://doi.org/10.1080/14760584.2017.1324302
  21. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine vol.199, pp.4, 2015, https://doi.org/10.4049/jimmunol.1601873
  22. Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells vol.12, pp.10, 2017, https://doi.org/10.1371/journal.pone.0185843
  23. Immune response effects of diverse vaccine antigen attachment ways based on the self-made nanoemulsion adjuvant in systemic MRSA infection vol.8, pp.19, 2015, https://doi.org/10.1039/c8ra00154e
  24. A comprehensive analysis of Italian web pages mentioning squalene-based influenza vaccine adjuvants reveals a high prevalence of misinformation vol.14, pp.4, 2015, https://doi.org/10.1080/21645515.2017.1407483
  25. Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/6718083
  26. The Sulfated Polysaccharides of Brown Algae and Products of Their Enzymatic Transformation as Potential Vaccine Adjuvants vol.13, pp.8, 2018, https://doi.org/10.1177/1934578x1801300837
  27. Alum/Toll-Like Receptor 7 Adjuvant Enhances the Expansion of Memory B Cell Compartment Within the Draining Lymph Node vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.00641
  28. RIG-I-Like Receptors as Novel Targets for Pan-Antivirals and Vaccine Adjuvants Against Emerging and Re-Emerging Viral Infections vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.01379
  29. DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.02619
  30. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines vol.9, pp.None, 2015, https://doi.org/10.3389/fimmu.2018.02793
  31. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines vol.9, pp.None, 2015, https://doi.org/10.3389/fmicb.2018.02506
  32. Enhancing Efficacy and Stability of an Antiheroin Vaccine: Examination of Antinociception, Opioid Binding Profile, and Lethality vol.15, pp.3, 2018, https://doi.org/10.1021/acs.molpharmaceut.7b00933
  33. Lipidated Brartemicin Analogues Are Potent Th1-Stimulating Vaccine Adjuvants vol.61, pp.3, 2015, https://doi.org/10.1021/acs.jmedchem.7b01468
  34. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice vol.207, pp.2, 2015, https://doi.org/10.1007/s00430-018-0535-4
  35. CYTOTOXIC PROPERTIES OF TRITERPENE SAPONIN TAUROSID SX1 AND ITS EFFECT ON HUMAN IMMUNODEFICIENCY VIRUS AND INFLUENZA VIRUS INFECTION IN MICE vol.63, pp.3, 2018, https://doi.org/10.18821/0507-4088-2018-63-3-123-129
  36. Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development vol.10, pp.6, 2015, https://doi.org/10.3390/v10060336
  37. “Gnothi Seauton” : Leveraging the Host Response to Improve Influenza Virus Vaccine Efficacy vol.6, pp.2, 2015, https://doi.org/10.3390/vaccines6020023
  38. Ovalbumin-containing core-shell implants suitable to obtain a delayed IgG1 antibody response in support of a biphasic pulsatile release profile in mice vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202961
  39. Tailoring a Plasmodium vivax Vaccine To Enhance Efficacy through a Combination of a CSP Virus-Like Particle and TRAP Viral Vectors vol.86, pp.9, 2015, https://doi.org/10.1128/iai.00114-18
  40. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity vol.15, pp.9, 2015, https://doi.org/10.1080/17425247.2018.1505860
  41. Adjuvant Potential of Poly-α-L-Glutamine from the Cell Wall of Mycobacterium tuberculosis vol.86, pp.10, 2015, https://doi.org/10.1128/iai.00537-18
  42. Immunogenicity and Protective Activity of a Chimeric Protein Based on the Domain III of the Tick-Borne Encephalitis Virus E Protein and the OmpF Porin of Yersinia pseudotuberculosis Incorporated int vol.19, pp.10, 2015, https://doi.org/10.3390/ijms19102988
  43. Aluminum salts as an adjuvant for pre-pandemic influenza vaccines: a meta-analysis vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-29858-w
  44. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity vol.15, pp.1, 2015, https://doi.org/10.1186/s12985-018-1035-2
  45. Comparison of local reaction at injection site following intramuscular administration with three commercial atrophic rhinitis vaccines in pigs vol.41, pp.4, 2015, https://doi.org/10.7853/kjvs.2018.41.4.251
  46. Rational Design and In Vivo Characterization of Vaccine Adjuvants vol.59, pp.3, 2018, https://doi.org/10.1093/ilar/ily018
  47. Single-dose Ag85B-ESAT6–loaded poly(lactic- co -glycolic acid) nanoparticles confer protective immunity against tuberculosis vol.14, pp.None, 2015, https://doi.org/10.2147/ijn.s172391
  48. Adjuvants in vaccines registered for human use vol.69, pp.6, 2015, https://doi.org/10.5937/arhfarm1906406f
  49. Plasmodium genomics: an approach for learning about and ending human malaria vol.118, pp.1, 2015, https://doi.org/10.1007/s00436-018-6127-9
  50. New Insights on the Adjuvant Properties of the Leishmania infantum Eukaryotic Initiation Factor vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/9124326
  51. ERdj5 in Innate Immune Cells Is a Crucial Factor for the Mucosal Adjuvanticity of Cholera Toxin vol.10, pp.None, 2015, https://doi.org/10.3389/fimmu.2019.01249
  52. The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization vol.9, pp.None, 2015, https://doi.org/10.3389/fcimb.2019.00031
  53. Osmolytes in vaccine production, flocculation and storage: a critical review vol.15, pp.2, 2019, https://doi.org/10.1080/21645515.2018.1526585
  54. Isolation of Antimicrobial Peptide from Food Protein Hydrolysates: An Overview vol.797, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.797.168
  55. Glucan Particles Are a Powerful Adjuvant for the HBsAg, Favoring Antiviral Immunity vol.16, pp.5, 2015, https://doi.org/10.1021/acs.molpharmaceut.8b01322
  56. Combining Monophosphoryl Lipid A (MPL), CpG Oligodeoxynucleotide (ODN), and QS-21 Adjuvants Induces Strong and Persistent Functional Antibodies and T Cell Responses against Cell-Traversal Protein for vol.87, pp.6, 2019, https://doi.org/10.1128/iai.00911-18
  57. Nanostructured cochleates: a multi-layered platform for cellular transportation of therapeutics vol.45, pp.6, 2019, https://doi.org/10.1080/03639045.2019.1583757
  58. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? vol.45, pp.6, 2015, https://doi.org/10.1080/03639045.2019.1583758
  59. Adjuvant activity of multimolecular complexes based on Glycyrrhiza glabra saponins, lipids, and influenza virus glycoproteins vol.164, pp.7, 2015, https://doi.org/10.1007/s00705-019-04273-2
  60. Protease-Activated Receptor 2 Agonist as Adjuvant: Augmenting Development of Protective Memory CD8 T Cell Responses Induced by Influenza Virosomes vol.203, pp.2, 2015, https://doi.org/10.4049/jimmunol.1800915
  61. Conjugation of a Small-Molecule TLR7 Agonist to Silica Nanoshells Enhances Adjuvant Activity vol.11, pp.30, 2015, https://doi.org/10.1021/acsami.9b08295
  62. Lipidic Aminoglycoside Derivatives: A New Class of Immunomodulators Inducing a Potent Innate Immune Stimulation vol.6, pp.16, 2015, https://doi.org/10.1002/advs.201900288
  63. Zika Virus-Derived E-DIII Protein Displayed on Immunologically Optimized VLPs Induces Neutralizing Antibodies without Causing Enhancement of Dengue Virus Infection vol.7, pp.3, 2015, https://doi.org/10.3390/vaccines7030072
  64. Immunological evaluation of two novel engineered Plasmodium vivax circumsporozoite proteins formulated with different human-compatible vaccine adjuvants in C57BL/6 mice vol.208, pp.6, 2015, https://doi.org/10.1007/s00430-019-00606-9
  65. Preparation of Squalene Oil-Based Emulsion Adjuvants Employing a Self-Emulsifying Drug Delivery System and Assessment of Mycoplasma hyopneumoniae -Specific Antibody Titers in BALB/c Mice vol.11, pp.12, 2015, https://doi.org/10.3390/pharmaceutics11120667
  66. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach vol.21, pp.None, 2015, https://doi.org/10.1016/j.imu.2020.100478
  67. Personalized Human Papillomavirus Vaccination for Persistence of Immunity for Cervical Cancer Prevention: A Critical Review With Experts' Opinions vol.10, pp.None, 2015, https://doi.org/10.3389/fonc.2020.00548
  68. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies vol.12, pp.1, 2015, https://doi.org/10.3390/pharmaceutics12010030
  69. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs vol.11, pp.None, 2015, https://doi.org/10.3389/fimmu.2020.01100
  70. Tuning Subunit Vaccines with Novel TLR Triagonist Adjuvants to Generate Protective Immune Responses against Coxiella burnetii vol.204, pp.3, 2020, https://doi.org/10.4049/jimmunol.1900991
  71. Potential Zika Vaccine: Encapsulated Nanocomplex Promotes Both T H 1/T H 2 Responses in Mice vol.3, pp.3, 2015, https://doi.org/10.1002/adtp.201900197
  72. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice vol.119, pp.None, 2020, https://doi.org/10.1016/j.molimm.2020.01.013
  73. Laser adjuvant for vaccination vol.34, pp.3, 2020, https://doi.org/10.1096/fj.201902164r
  74. MERS-CoV Spike Protein Vaccine and Inactivated Influenza Vaccine Formulated with Single Strand RNA Adjuvant Induce T-Cell Activation through Intranasal Immunization in Mice vol.12, pp.5, 2020, https://doi.org/10.3390/pharmaceutics12050441
  75. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin vol.10, pp.3, 2015, https://doi.org/10.1007/s13346-020-00728-1
  76. The Potency of an Anti-MERS Coronavirus Subunit Vaccine Depends on a Unique Combinatorial Adjuvant Formulation vol.8, pp.2, 2015, https://doi.org/10.3390/vaccines8020251
  77. Polysaccharide PCP-I isolated from Poria cocos enhances the immunogenicity and protection of an anthrax protective antigen-based vaccine vol.16, pp.7, 2020, https://doi.org/10.1080/21645515.2019.1675457
  78. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins vol.235, pp.9, 2015, https://doi.org/10.1002/jcp.29583
  79. Evaluation of CpG-ODN-Adjuvanted Toxoplasma gondii Virus-Like Particle Vaccine upon One, Two, and Three Immunizations vol.12, pp.10, 2015, https://doi.org/10.3390/pharmaceutics12100989
  80. An Immunomodulatory Therapeutic Vaccine Targeting Oligomeric Amyloid-β vol.77, pp.4, 2015, https://doi.org/10.3233/jad-200413
  81. Biotin Functionalized Self‐Assembled Peptide Nanofiber as an Adjuvant for Immunomodulatory Response vol.15, pp.12, 2015, https://doi.org/10.1002/biot.202000100
  82. Development of an in silico multi-epitope vaccine against SARS-COV-2 by précised immune-informatics approaches vol.27, pp.None, 2015, https://doi.org/10.1016/j.imu.2021.100781
  83. Inflammation-related adverse reactions following vaccination potentially indicate a stronger immune response vol.10, pp.1, 2021, https://doi.org/10.1080/22221751.2021.1891002
  84. Polyphosphazenes as Adjuvants for Animal Vaccines and Other Medical Applications vol.9, pp.None, 2015, https://doi.org/10.3389/fbioe.2021.625482
  85. Subunit Vaccines Using TLR Triagonist Combination Adjuvants Provide Protection Against Coxiella burnetii While Minimizing Reactogenic Responses vol.12, pp.None, 2015, https://doi.org/10.3389/fimmu.2021.653092
  86. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System vol.15, pp.1, 2021, https://doi.org/10.1021/acsnano.0c08913
  87. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach vol.16, pp.2, 2021, https://doi.org/10.1371/journal.pone.0245072
  88. Developing a Vaccine to Block West Nile Virus Transmission: In Silico Studies, Molecular Characterization, Expression, and Blocking Activity of Culex pipiens mosGCTL-1 vol.10, pp.2, 2015, https://doi.org/10.3390/pathogens10020218
  89. The Synergistic Effects of Sulfated Lactosyl Archaeol Archaeosomes When Combined with Different Adjuvants in a Murine Model vol.13, pp.2, 2015, https://doi.org/10.3390/pharmaceutics13020205
  90. High‐ and low‐molecular‐weight chitosan act as adjuvants during single‐dose influenza A virus protein vaccination through distinct mechanisms vol.118, pp.3, 2015, https://doi.org/10.1002/bit.27647
  91. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines vol.9, pp.3, 2021, https://doi.org/10.3390/vaccines9030234
  92. Immuno-Informatics Analysis of Pakistan-Based HCV Subtype-3a for Chimeric Polypeptide Vaccine Design vol.9, pp.3, 2021, https://doi.org/10.3390/vaccines9030293
  93. Analyzing the Research Evolution in Response to COVID-19 vol.10, pp.4, 2015, https://doi.org/10.3390/ijgi10040237
  94. Design of Trehalose‐Based Amide/Sulfonamide C‐type Lectin Receptor Signaling Compounds vol.16, pp.8, 2015, https://doi.org/10.1002/cmdc.202000775
  95. Systems Biology behind Immunoprotection of Both Sheep and Goats after Sungri/96 PPRV Vaccination vol.6, pp.2, 2015, https://doi.org/10.1128/msystems.00820-20
  96. Advancements in protein nanoparticle vaccine platforms to combat infectious disease vol.13, pp.3, 2015, https://doi.org/10.1002/wnan.1681
  97. HIV-1 Accessory Proteins: Which one is Potentially Effective in Diagnosis and Vaccine Development? vol.28, pp.6, 2015, https://doi.org/10.2174/0929866528999201231213610
  98. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines vol.9, pp.6, 2015, https://doi.org/10.3390/vaccines9060563
  99. Combination Adjuvants Affect the Magnitude of Effector-Like Memory CD8 T Cells and Protection against Listeriosis vol.89, pp.7, 2015, https://doi.org/10.1128/iai.00768-20
  100. Evaluation of immunogenicity and protection mediated by Lawsonia intracellularis subunit vaccines vol.237, pp.None, 2015, https://doi.org/10.1016/j.vetimm.2021.110256
  101. Design, expression, and purification of a multi-epitope vaccine against Helicobacter Pylori based on Melittin as an adjuvant vol.157, pp.None, 2015, https://doi.org/10.1016/j.micpath.2021.104970
  102. Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Ovalbumin-Specific Cell Mediated Immunity in Mice Model vol.10, pp.9, 2015, https://doi.org/10.3390/biology10090908
  103. COVID-19 vaccine platforms: Delivering on a promise? vol.17, pp.9, 2015, https://doi.org/10.1080/21645515.2021.1911204
  104. Designing a Multi-Epitope Vaccine against Chlamydia trachomatis by Employing Integrated Core Proteomics, Immuno-Informatics and In Silico Approaches vol.10, pp.10, 2015, https://doi.org/10.3390/biology10100997
  105. Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against Clostridium perfringens vol.9, pp.10, 2015, https://doi.org/10.3390/vaccines9101079
  106. Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum/CpG adjuvants vol.39, pp.48, 2015, https://doi.org/10.1016/j.vaccine.2021.10.066
  107. Designing novel epitope-based polyvalent vaccines against herpes simplex virus-1 and 2 exploiting the immunoinformatics approach vol.39, pp.17, 2021, https://doi.org/10.1080/07391102.2020.1803969
  108. PPAR agonists as effective adjuvants for COVID-19 vaccines, by modifying immunogenetics: a review of literature vol.19, pp.1, 2021, https://doi.org/10.1186/s43141-021-00179-2
  109. Potentiation of Recombinant NP and M1-Induced Cellular Immune Responses and Protection by Physical Radiofrequency Adjuvant vol.9, pp.12, 2021, https://doi.org/10.3390/vaccines9121382
  110. Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatics approach vol.40, pp.1, 2015, https://doi.org/10.1080/07391102.2020.1792347
  111. Designing of a multi-epitopes-based peptide vaccine against rift valley fever virus and its validation through integrated computational approaches vol.141, pp.None, 2022, https://doi.org/10.1016/j.compbiomed.2021.105151