• Title/Summary/Keyword: Design suction pressure

Search Result 157, Processing Time 0.032 seconds

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, JunYoung;Chung, HeeTaeg;Baek, JeHyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.244-249
    • /
    • 2002
  • It is known that tip clearance flows reduce the pressure rin, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock Depending on the operating conditions, the position of shock-wave on the blade surface are v8y different close to the blade tip of the transonic compressor rotor. The shock-wave position dose to the blade tip had the dose relationship with the starting position of leakage vortex and the direction of leakage flow.

  • PDF

Flow in a High Speed Compressor Due to Axisymmetric Tip (대칭 팁 간극에 기인한 고속으로 회전하는 압축기에서의 유동)

  • Joo, Hyun Suh;Song, Seung Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.279-283
    • /
    • 2002
  • The effects of finite gap at the tip of turbomachinery blades have long been topics of both theoretical and experimental research because tip clearance degrades turbomachinery performance. This paper presents an analytical study of radial flow redistribution in a high speed compressor stage with axisymmetric tip clearance. The flow is assumed to be inviscid and compressible. The stage is modeled as an actuator disc and the analysis is carried out in the meridional plane. Upon going through the stage, the radially uniform upstream flow splits into the tip clearance and passage flows. The tip clearance flow is modeled as a jet driven by blade loading, or pressure difference between the pressure and suction sides. The model takes into consideration the detached shocks which occur in the rotor passage at the design point. This shock model is used to calculate the density ratio across the stage. Thus, the model is capable of predicting the kinematic effects of tip clearance in the high speed compressor flow field.

  • PDF

A Flow Analysis of a Solution Pump for an Absorption Chiller (흡수식 냉동기용 용액펌프의 유동특성 해석)

  • Bae Wonyoung;Lee Kichoon;Hur Nahmkeon;Jeong Siyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.569-572
    • /
    • 2002
  • In the present study, flow simulations of a solution pump fer an absorption chiller are performed. The results are compared to the experimental data. Since the cavitation is more likely to occur in a solution pump due to Its operation under vacuum condition, and the cavitation was not considered in the present computations, the computed and experimental results show large discrepancies. For more accurate performance prediction of a solution pump, a cavitation model is required in the flow simulation. Flows through an inducer are also studied to see the effect of design parameters on performance characteristics. It is shown from the results that, if not properly designed, recirculation legion may exist near the hub region of the Inducer, and the suction surface may experience higher pressure than the pressure surface of the inducer, which may deteriorate the performance.

  • PDF

Flow Characteristics of a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1383-1388
    • /
    • 2004
  • The flow characteristics in the blade passage of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From the relative velocity distributions near the rotor tip, large axial velocity decay is observed at near stall condition, which results in large blockage compared to that at the design condition. Througout the flow measurements using a quasi-orthogonal measuring points to the tip leakage vortex, it is noted that the radial position of the tip leakage vortex is distributed between 94 and 96 percent span for all flow conditions. High spectrum density due to the large fluctuation of the tip leakage vortex is observed near the blade suction surface below the frequency of 1000 Hz at near stall condition.

  • PDF

A study on the hydrofoil section shapes in consideration of viscous effects for marine propeller blades (점성의 영향을 고려한 선박 추진기용 익형의 단면 형상에 관한 연구)

  • 김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • The author has presented a new approach to design hydrofoil section shapes in consideration of viscous for marine propeller blades. In suction sides of propeller blades, the pressure distribution on hydrofoil sections in non-cavitating flow should be examined before the study of cavitation characteristics. Generally, the calculation results for hydrofoil conformal mapping method by which neglect viscous effects do not agree with experimental ones. Moreover, another papers reported that laminar separation bubble and transition played an important role on the cavitation inception. From these considerations, it is very important to study the viscous effects of the hydrofoil sections, especially the mechanism separation bubble and the apparent thickness of hydrofoil section. Therefore, the new design method of hydrofoil sections in consideration of viscous effects in comparison to the airfoil section should be studied. In designing the new hydrofoil section shapes, based on Eppler theory, the author tried to give the peak negative pressure in leading edge region for NACA airfoil in consideration of viscous effects without turbulent boundary layer separation as much as possible. The design method was verified from the fact that the boundary characteristics was improved and the lifts of new hydrofoils were slightly in creased in comparison to these of NACA 16-012 symmetrical, NACA 4412 non-symmetrical airfoils.

  • PDF

Design of Non-Contact Pick-Up Head for Carrying Large Flat Sheets (대평판 이송을 위한 비접촉 헤드 설계)

  • Kim, Joon Hyun;Kim, Young Geul;Ahn, Sung Wook;Kim, Young Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.937-944
    • /
    • 2013
  • This paper describes an improved model that can be used for configuring a non-contact pneumatic head to handle a large sheet of glass. The cylindrical head model is of a large size (70 mm). It operates on vortex flow, which can simultaneously generate suction and repulsion over the flat object's surface. The head allows for the minimal non-contact lifting of objects weighing over 3N by using reference conditions (working pressure and head dimensions). Additionally, a functional flow-guide is applied for inducing a developing tangential vortex flow to increase suction and repulsion to the reference head. The cylindrical flow-guide is associated with relatively low tangential velocity. The improved model generates greater lifting force than the reference model, as verified experimentally.

Analysis of the ejector for low-pressure evaporative desalination system using solar energy (태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석)

  • Hwang, In-Seon;Joo, Hong-Jin;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

Study of Reverse Design for an Axial Turbine Blade Profile and Design Parameters for Designing Blade Geometry (축류형 터빈 익형의 역설계 및 형상설계를 위한 설계변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.7-14
    • /
    • 2000
  • For a given axial turbine blade, reverse design method is developed to improve blade efficiency, optimize blade profile, or repair parts etc. In this process, design parameters for designing axial turbine blade are induced. The induced design parameters are as follows; ellipse at leading edge, radios of trailing edge, axial chord, tangential chord, wedge angle at the inlet, and unguided turning angle. Suction and pressure surfaces of turbine blade are described by cubic polynomials. Two sample blades we chosen and their blade profiles are measured at the mean radius. Values of design parameters for sample blades are obtained by the reverse design method. Re-designed blade profiles using calculated design parameters are compared with the measured data, and they show good agreement. So, the developed design method could be applied to design general turbine blades. Various blade shapes are designed, and they show that designed blade profiles can be adjusted by controlling design parameters.

  • PDF

Appraisement of Design Parameters through Fluid Dynamic Analysis in Thermal Vapor Compressor (열 증기 압축기 내의 유동해석을 통한 설계 인자들의 영향 분석)

  • Park I. S.;Kim H. W.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.155-158
    • /
    • 2002
  • In general, TVC(Thermal Vapor Compressor) is used to boost/compress a low pressure vapor to a higher pressure for further utilization. The one-dimensional method is simple and reasonably accurate, but cannot realize the detail as like the back flow and recirculation in the mixing chamber, viscous shear effect, and etc. In this study, the axisymmetric How simulations have been performed to reveal the detailed flow characteristics for the various ejector shapes. The Navier-Stokes and energy equations are solved together with the continuity equation In the compressible flow fields. The standard $k-{\epsilon}$ model is selected for the turbulence modeling. The commercial computational fluid dynamic code FLUENT software is used for the simulation. The results contain the entrainment ratio under the various motive, suction and discharge pressure conditions. The numerical results are compared with the experimental data, and the comparison shows the good agreement. The three different flow regimes (double chocking, single chocking and back flow) have been clearly distinguished according to each boundary pressure values. Also the effects of the various shape variables (nozzle position, nozzle outlet diameter, mixing tube diameter, mixing tube converging angle, and etc.) are quantitatively discussed.

  • PDF

A study on the working mechanism of internal pressure of super-large cooling towers based on two-way coupling between wind and rain

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.479-497
    • /
    • 2019
  • In the current code design, the use of a uniform internal pressure coefficient of cooling towers as internal suction cannot reflect the 3D characteristics of flow field inside the tower body with different ventilation rate of shutters. Moreover, extreme weather such as heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind. In this study, the world's tallest cooling tower under construction, which stands 210m, is taken as the research object. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed iteratively using continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind speed and rainfall intensity on the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower body is analyzed. The combination of wind velocity and rainfall intensity that is most unfavorable to the cooling tower in terms of distribution of internal pressure coefficient is identified. On this basis, the wind/rain loads, distribution of aerodynamic force and working mechanism of internal pressures of the cooling tower under the most unfavorable working condition are compared between the four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the amount of raindrops captured by the internal surface of the tower decreases as the wind velocity increases, and increases along with the rainfall intensity and ventilation rate of the shutters. The maximum value of rain-induced pressure coefficient is 0.013. The research findings lay the basis for determining the precise values of internal surface loads of cooling tower under extreme weather conditions.