• Title/Summary/Keyword: Design power

Search Result 17,162, Processing Time 0.041 seconds

Evaluation of Load Rejection to House Load Test at 50% Power for UCN 3

  • Lee, Chang-Gyun;Suk whun Sohn;Sohn, Jong-Joo;Seo, Jong-Tae;Lee, Sang-Keun;Kim, Youngsung;Nam, Kyu-Won;Jung, Yang-Mook;Chae, Kyeong-Sik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.398-403
    • /
    • 1998
  • The Load Rejection to House Load test at 50% power was successfully peformed during the UCN 3 PAT period. In this test, all plant control systems automatically controlled the plant from 50% power to house load operation mode. The KISPAC code, which was used in the performance analysis during the design process of UCN 3&4, predictions of the test agreed with the measured data demonstrating the validity of the code as well as the completeness of the plant design.

  • PDF

System Analysis and Design for Vibration-Based Power Generation using Piezoelectric Materials (압전 재료를 이용한 진동에너지 변환 전력발생 시스템 해석 및 설계)

  • Keum, Myoung-Hun;Kim, Kyung-Ho;Lee, Seung-Yep;Ko, Byoung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.717-725
    • /
    • 2004
  • A power generation systems are proposed to convert ambient mechanical vibration into electrical energy using cantilever-type piezoelectric materials. The vibration-based power device can be used for self-powered systems without batteries. This paper presents the theoretical analysis for the coupled equations of piezoelectric and structural motions and investigates the dynamic characteristics of the self-power system using transfer function method. The theoretical model is verified by the finite element analysis of the resonance frequency, the dynamic response of the structure and the sensor sensibility. Experimental results measured using a prototype system agree with the theoretical predictions. The system is shown to produce 34.5 ㎼ in average. Finally, we perform the optimal design for system variables to maximize output power.

Design of Bootstrap Power Supply for Half-Bridge Circuits using Snubber Energy Regeneration

  • Chung, Se-Kyo;Lim, Jung-Gyu
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • This paper deals with a design of a bootstrap power supply using snubber energy regeneration, which is used to power a high-side gate driver of a half-bridge circuit. In the proposed circuit, the energy stored in the low-side snubber capacitor is transferred to the high-side bootstrap capacitor without any magnetic components. Thus, the power dissipation in the RCD snubber can be effectively reduced. The operation principle and design method of the proposed circuit are presented. The experimental results are also provided to show the validity of the proposed circuit.

Development of a Hydraulic Power Package Enclosed with an Electric Motor (모터 일체형 유압 파워 패키지의 개발)

  • Park, Y.H.;Lee, C.D.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • In this study, a new design of an one-body type of an unbalanced-fixed- displacement type vane pump combined with an induction type electric motor was suggested. By the application of the new design scheme, it was possible to reduce the number of parts of the pump system and to cut down the volume of power package than that of already-used products. The case in this study enabled efficient heat transfer and electricity insulation of hydraulic fluid. Thus oil moves through the inside of the package for cooling and returns to the reservoir. Because of this design, it was difficult to measure the shaft-input torque. Therefore the package overall efficiency in the paper was evaluated with a ratio of hydraulic power and electric power.

  • PDF

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE (SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계)

  • 김윤호;윤병도;강영록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.

Design method of stable RF power amplifiers using 3dB coupled line (3dB coupled line을 이용한 안정한 RF전력증폭기 설계방법)

  • 김선욱;강원태;강충구;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.24-31
    • /
    • 1997
  • A new design method of stable RF power amplifier using 3dB coupled line is proposed in this thiesis. The proposed method of broadband matching consist of resistive matching circuits at low frequency and lossless matching circuits at microwave band. This design method increase the stability of an amplifier and is suitable for interstage matching. When high power amplifier is designed using this method for PCS base transceiver station, the measured resutls show thst the gain of 18.5dB, and 9W (39.5dBm) output power. We use motorola's MRF6401 for medium power and MRF 6402 for large power and cascaded them.

  • PDF

Performance Improvement of Zero Voltage Switching PWM Half Bridge DC/DC Converter Using Time Delay Control Method (시간 지연 제어를 이용한 영전압 스위칭 PWM 하프 브릿지 컨버터의 제어 성능 개선)

  • 강정일;정영석;이준영;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.85-89
    • /
    • 1998
  • A switching power stage is a very nonlinear system because it has two or more operation modes in one switching cycle. To model a switching power stage, the state space averaging method has been developed. Though it allows a unified treatment of a large variety of switching power stages, the model it yields is always very nonlinear. So, it is required to linearize the averaged model. But it is well known that a controller for a nonlinear plant designed by the linearization frequently fails in showing satisfactory control performance. Hence it is very natural to try to design a nonlinear controller for a switching power stage. In design of a switching power system, nonlinear control approaches such as adaptive control and fuzzy control have been widely studied so far. In this research, a recently developed control method, time delay control is briefly studied and a design example for a ZVS PWM half bridge converter is given. The performance of the time delay controller is compared to its conventional counterpart, PI controller by computer simulations.

  • PDF