• Title/Summary/Keyword: Design power

Search Result 17,123, Processing Time 0.04 seconds

Analysis and design of voltage doubling rectifier circuit for power supply of neutron source device towards BNCT

  • Rixin Wang;Lizhen Liang;Congguo Gong;Longyang Wang;Jun Tao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2395-2403
    • /
    • 2024
  • With the rapid development of DC high voltage accelerator, higher requirements have been raised for the design of DC high voltage power supply, requiring more stable high voltage with lower output ripple. Therefore, it also puts forward higher requirements for the parameter design of the voltage doubling rectifier circuit, which is the core component of the DC high voltage power supply. In order to obtain output voltage with better performance, the effects of the working frequency, the stage capacitance and the load resistance on the output voltage of the voltage doubling rectifier circuit are studied in detail by simulation. It can be concluded that the higher the working frequency of the transformer, the larger the stage capacitance, the larger the load resistance and the better the output voltage performance in a certain range. Based on this, a 2.5 MV voltage doubling rectifier circuit driven by a 120 kHz frequency transformer is designed, developed and tested for the power supply of the neutron source device towards BNCT. Experimental results show that this voltage doubling rectifier circuit can satisfy the design requirements, laying a certain foundation for the engineering design of DC high voltage power supply of neutron source device.

Trenched-Sinker LDMOSFET (TS-LDMOS) Structure for 2 GHz Power Amplifiers

  • Kim, Cheon-Soo;Kim, Sung-Do;Park, Mun-Yang;Yu, Hyun-Kyu
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2003
  • This paper proposes a new LDMOSFET structure with a trenched sinker for high-power RF amplifiers. Using a low-temperature, deep-trench technology, we succeeded in drastically shrinking the sinker area to one-third the size of the conventional diffusion-type structure. The RF performance of the proposed device with a channel width of 5 mm showed a small signal gain of 16.5 dB and a maximum peak power of 32 dBm with a power-added efficiency of 25% at 2 GHz. Furthermore, the trench sinker, which was applied to the guard ring to suppress coupling between inductors, showed an excellent blocking performance below -40 dB at a frequency of up to 20 GHz. These results confirm that the proposed trenched sinker should be an effective technology both as a compact sinker for RF power devices and as a guard ring against coupling.

  • PDF

Memory Design for Artificial Intelligence

  • Cho, Doosan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.90-94
    • /
    • 2020
  • Artificial intelligence (AI) is software that learns large amounts of data and provides the desired results for certain patterns. In other words, learning a large amount of data is very important, and the role of memory in terms of computing systems is important. Massive data means wider bandwidth, and the design of the memory system that can provide it becomes even more important. Providing wide bandwidth in AI systems is also related to power consumption. AlphaGo, for example, consumes 170 kW of power using 1202 CPUs and 176 GPUs. Since more than 50% of the consumption of memory is usually used by system chips, a lot of investment is being made in memory technology for AI chips. MRAM, PRAM, ReRAM and Hybrid RAM are mainly studied. This study presents various memory technologies that are being studied in artificial intelligence chip design. Especially, MRAM and PRAM are commerciallized for the next generation memory. They have two significant advantages that are ultra low power consumption and nearly zero leakage power. This paper describes a comparative analysis of the four representative new memory technologies.

Thermal Stress Analysis of Piping Systems in Steam-driven Power Engines (증기 동력기관 내 배관시스템의 열응력 해석)

  • Kim, C.H.;Chung, H.T.;Bae, J.S.;Jung, I.S.;Lee, S.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.35-42
    • /
    • 2009
  • The piping systems in the steam-driven power engines lie under the cyclic condition of thermal expansion and contraction by superheated steam. These phenomena might cause some severe damages on the pipes and the accessory devices. To avoid these damages, the calculation of the proper strength and the consideration of the reduced resultant forces on the materials are needed. In the present study, numerical investigations on the effects of the thermal deformation of the industrial piping system were performed with comparison of the design data. Commercial software, ABAQUS with the thermal-fluidic loadings based on the design conditions was used for the thermal stress analysis of the piping system. From the analysis of the initially-designed pipe supporters, the rearrangement was suggested to improve the piping design.

  • PDF

A Symbiotic Evolutionary Design of Error-Correcting Code with Minimal Power Consumption

  • Lee, Hee-Sung;Kim, Eun-Tai
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.799-806
    • /
    • 2008
  • In this paper, a new design for an error correcting code (ECC) is proposed. The design is aimed to build an ECC circuitry with minimal power consumption. The genetic algorithm equipped with the symbiotic mechanism is used to design a power-efficient ECC which provides single-error correction and double-error detection (SEC-DED). We formulate the selection of the parity check matrix into a collection of individual and specialized optimization problems and propose a symbiotic evolution method to search for an ECC with minimal power consumption. Finally, we conduct simulations to demonstrate the effectiveness of the proposed method.

  • PDF

Network Design for Construction of Remote Diagnosis System for Power Facilities of Electric Railway (전기철도 전력시설 진단용 원격진단시스템 구축을 위한 네트워크 설계)

  • Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.432-436
    • /
    • 2009
  • This paper is described that advanced study on network design of remote diagnosis system for power facilities of electric railway. In the field, it is very difficult for worker to diagnosis power facilities including catenary because workers should be maintenance on AC power supply. Therefore, to properly design on remote diagnosis system, we have searched the inside and outside of the country-related technology trends. Also we confirmed that required technologies to design interface technology required for the development of sensor devices and the USN network was designed in accordance with required skills. Throughout variety of requirements, we have development iRFS based ZA sensors and iRFM to receive data of sensor. Also CC2420 is applied as single-chip which used 2.4GHz IEEE802.15.4 compliant RF tranciver designed for low-power and low-voltage wireless applications for ZigBee communication.

A New Optimum Design for a Single Input Fuzzy Controller Applied to DC to AC Converters

  • Ayob, Shahrin Md.;Salam, Zainal;Azli, Naziha Ahmad
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.306-312
    • /
    • 2010
  • In this paper, the design of an optimum single input Fuzzy controller for application in dc to ac converters is presented. Contrary to conventional Fuzzy controllers, the proposed controller has a smaller number of rules and tuning parameters but is capable of performing identically to a conventional controller. These benefits lead to a simpler controller design. The controller is designed as a PI controller for small-signal disturbances. However, for optimum large-signal performance, heuristic tuning is used. The tuning is less complicated and hence optimum large-signal performance is achievable. The system is simulated and a hardware prototype was developed for comparison purposes.

Design of Model Predictive Controller for Water Level control in the Steam Generator of a nuclear Power Plants (증기 발생기 수위제어를 위한 모델예측제어기 설계)

  • 손덕현;이창구
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.376-383
    • /
    • 2001
  • Factors leading to poor control of the steam generator in a nuclear power plant are nonminimum phase characteristics, unreliable of flow measurements and nonlinear characteristics, which increase more at low power(below 20%) operation. And the study of problems for water level control in the steam generator is that design water level controller only power renge, not entire. This paper introduces a model predictive control(MPC) algorithm for solving poor control factors and quadratic programming(QP) for solving input constraints. Also presents the design method of stable model predictive controller in the entire power range. The simulation results show the efficiency of proposed MPC controller by comparing with PI controller, and effect of the design parameters.

  • PDF

Design of a Hydraulic System for a Power Split type CVT (동력분기식 무단변속기의 유압구동부 설계)

  • 김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.168-173
    • /
    • 2004
  • This article describes the design of a hydraulic system for a power split type continuously variable transmission (CVT). The CVT considered here, is composed of planetary gears, clutches, and a torque converter which is mainly used for the realization of CVT function. Similar to automatic transmissions, the hydraulic system of CVT is designed for supplying hydraulic flows and pressures to each component of CVT, in order to activate the clutch engagements and torque converter operation, and to cool the drivetrain. By using the mathematical models of drivetrain, a simulation program was developed to investigate the power performance of CVT equipped vehicle and the operating conditions of each component of CVT. And the design parameters of the hydraulic system and clutches were calculated using the operating conditions and power requirements which obtained from the simulation results. Finally the hydraulic circuit design of prototyped valve body is presented based on the numerical results of this analysis.

Design of Power Factor Correction IC for 1.5kW System Power Module (1.5kW급 System Power Module용 Power Factor Correction IC 설계)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Park, Hyun-Il;Kim, Nam-Kyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.499-500
    • /
    • 2008
  • In this paper, we design and implement the monolithic power factor correction IC for system power modules using a high voltage(50V) CMOS process. The power factor correction IC is designed for power applications, such as refrigerator, air-conditioner, etc. It includes low voltage logic, 5V regulator, analog control circuit, high-voltage high current output drivers, and several protection circuits. And also, the designed IC has standby detection function which detects the output power of the converter stage and generates system down signal when load device is under the standby condition. The simulation and experimental results show that the designed IC acts properly as power factor correction IC with efficient protective functions.

  • PDF