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In this paper, a new design for an error correcting code 
(ECC) is proposed. The design is aimed to build an ECC 
circuitry with minimal power consumption. The genetic 
algorithm equipped with the symbiotic mechanism is used 
to design a power-efficient ECC which provides single-
error correction and double-error detection (SEC-DED). 
We formulate the selection of the parity check matrix into 
a collection of individual and specialized optimization 
problems and propose a symbiotic evolution method to 
search for an ECC with minimal power consumption. 
Finally, we conduct simulations to demonstrate the 
effectiveness of the proposed method. 
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I. Introduction 

Error correcting codes (ECCs) are used to protect against soft 
errors and increase the reliability of computer memory [1]. They 
are widely used in all types of memory, including caches and 
embedded memory. Single-error correcting and double-error 
detecting (SEC-DED) codes are generally used for this purpose 
[2]. This paper focuses on reducing power consumption in 
memory ECC circuitry that provides SEC-DED.  

With the growing importance of power saving in circuit 
design, many researchers are investigating techniques to reduce 
power consumption in all components of system design. Power 
consumption is an important design concern in ECCs since the 
ECC check circuit is activated during all reading and writing 
memory accesses, which happen frequently. Therefore, 
researchers have proposed various methods to reduce power 
consumption in ECCs [3]-[5]. Some studies have directly 
applied general power reduction methods to the design of 
ECCs, while other research has reported power reduction 
strategies specifically tailored to ECCs. The former are usually 
not very efficient because they ignore some special properties 
of ECCs that should be exploited to further reduce power 
consumption [6]. Among the power reduction strategies 
tailored to ECC, Ghosh and others introduced an interesting 
power reduction strategy based on learning theory [6]. They 
used the genetic algorithm (GA) and simulated annealing (SA) 
to obtain a power-efficient ECC. Their study, however, does 
not fully exploit the characteristics of the GA in that the 
important features of the parent chromosomes are not delivered 
to the offspring, and the performance is thereby degraded. To 
solve this, Lee and others proposed a genetic design method for 
an ECC check circuit with minimal power consumption [7]. 
Their approach is to select a parity check matrix using a special 

A Symbiotic Evolutionary Design of  
Error-Correcting  Code with Minimal Power Consumption 

 Heesung Lee and Euntai Kim  



800   Heesung Lee et al. ETRI Journal, Volume 30, Number 6, December 2008 

genetic operator and to implement the corresponding check 
circuit in order to minimize its power consumption. However, 
their study does not observe that the whole parity check matrix 
can be decomposed into a collection of independent parity 
columns.  

In this paper, we propose a new design method for ECCs 
with the goal of power minimization. The new method is based 
on symbiotic evolution, and not on the general (or simple) GA. 
Symbiotic evolution differs in structure from the general GA. 
An individual in a simple GA means a complete solution to a 
given problem, while an individual in a symbiotic evolution is 
only a part of the solution, and the complete solution is attained 
when an appropriate set of individuals are gathered. We 
employ symbiotic evolution in this paper to exploit the 
property that the whole parity check matrix can be 
decomposed into a collection of independent parity columns. 
Thus, we first formulate the selection of the parity check matrix 
into a collection of independent optimization problems and 
obtain the complete solution of the decomposed formulation 
using symbiotic evolution. 

The rest of this paper is organized as follows. Section II 
briefly explains the preliminary fundamentals, including the 
ECC and symbiotic evolution. Section III proposes a new ECC 
design scheme based on symbiotic evolution. The aim of the 
scheme is to design an ECC check circuit with minimal power 
consumption. Section IV discusses the results of simulations 
and compares the proposed method with previous methods. 
Finally, section V offers concluding remarks regarding the 
study as a whole. 

II. Basic Theory 

1. Error Correcting Code 

ECCs are represented by a parity-check matrix, H, and are 
used on both read and write memory accesses. Once H has 
been selected, the corresponding ECC circuitry can be 
synthesized in a straightforward way. Consider an (n, k) code, 
where n is the length of a codeword, k is the number of data 
bits, and (n, k) is the number of parity check bits. The H-matrix 
is defined as 

[ | ]T
n k−=H A I ,                 (1) 

where A is a k×(n–k) parity check generator matrix, and In-k is 
an (n–k)×(n–k) identity matrix. In H, there are (n–k) rows and n 
columns. Each row corresponds to a check bit, and each 
column corresponds to a bit in the codeword. To possess an 
SEC-DED property, the H-matrix must satisfy the condition 
that the minimum weight requirement is four, which implies 
that three or fewer columns of the H-matrix are linearly 

independent [8]. There are many possible choices for the 
ECC code that satisfy this condition and provide the SEC-
DED. We select from among them an ECC with minimal 
power consumption. The power consumed in the ECC is 
highly dependent on which columns are used in H-matrices 
and how they are permutated because most of the power is 
dissipated in the ECC circuitry when the outputs of the gates 
are switched. 

In designing the SEC-DED, there are two configurations: 
Hamming code [9] and Hsiao code [10]. In Hamming code, 
we determine only the permutations of the columns of the 
parity check matrix to minimize power consumption. In Hsiao 
code, we determine not only the columns of the parity check 
matrix, but also the odd weight columns to include in the 
matrix.  

2. Symbiotic Evolution 

In this subsection, we review some basic concepts of 
symbiotic evolution. GAs are numerical optimization and 
search algorithms inspired by the mechanics of natural 
selection, genetics, and evolution. They typically maintain a 
population of individuals that represents the set of solution 
candidates for the optimization problem to be solved [11]. 
Unlike normal GAs, in which an individual in a population is 
considered as a potential complete solution to a given problem, 
symbiotic evolution regards an individual in a population as 
only a partial solution (a part of a complete solution) to the 
problem. Complete solutions are formed by concatenating 
several individuals.  

The expression symbiotic evolution first appears in [12]. That 
work proposed the reinforcement learning method called 
symbiotic, adaptive neuro-evolution (SANE), which evolves 
neurons of the neural network through symbiotic evolution. 
The fitness of an individual is obtained by summing the fitness 
values of all possible combinations that the individual joins as a 
partial solution and dividing the sum by the total number of 
combinations that individual joins. Because the partial 
solutions specialize towards one aspect of the problem, partial 
solutions can be characterized as specializations [13]. A single 
partial solution cannot take over a population, since there must 
be other specializations present to obtain high fitness values 
[13]. If a specialization becomes too prevalent and dominates 
an entire population, its members will not combine with other 
specializations; thus, they will not receive the benefit of other 
specializations and will be assigned low fitness values. For 
these reasons, the specialization property of symbiotic 
evolution ensures diversity, and symbiotic evolution can find 
solutions in diverse and unconverged populations. This is 
unlike the standard evolutionary approach, which easily and 
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frequently converges at a local optimum. Symbiotic evolution 
also appears to be a faster and more efficient search scheme 
than a traditional GA [14]. 

III. Design of Error-Correcting Code through 
Symbiotic Evolution 

In this paper, we propose a new design scheme for an ECC 
based on symbiotic evolution. The specialization property of 
symbiotic evolution closely matches the individual and 
independent properties of the columns in the parity check 
matrix, and symbiotic evolution can be considered a good 
solution for ECC design. In this paper, we exploit the match to 
obtain an efficient ECC. 

1. Encoding 

We first consider symbiotic evolution encoding for 
Hamming code. For Hamming code, each complete solution 
corresponds to a particular permutation of the columns of the 
parity check matrix. Figure 1 shows the structure of the 
chromosome for Hamming code. 

A chromosome represents an association between a memory 
bit position and the ECC position. The first gene in the 
chromosome denotes a memory bit position and the position of 
the column in the H-matrix. The second gene denotes an input 
position for the ECC. The chromosome is only a part of the 
complete solution (the complete Hamming code) and 
combines with other chromosomes to form a complete solution 
as shown in Fig. 2. The chromosomes shown in Fig. 2 are 
randomly selected and combined so that the input positions of 
the ECC are all distinct. For example, consider a possible 
permutation string for k=64: “3, 1, 10, 4, 5,…, 15.” The string 
indicates that the first bit of memory is mapped into the third 
bit in the ECC circuit, and the second bit of memory is mapped 
to the first input, and so on. 

Next, we consider symbiotic encoding for Hsiao code. Since 
Hsiao code consists of all the low-order, odd-weight columns 
and some of the higher-order, odd-weight columns, the 
chromosome of Hsiao code should include the permutation of 
columns in addition to a selection of higher-order, odd-weight 
columns. In the case of 64-bit architecture, for example, the  
 

 

Fig. 1. Chromosome for Hamming code. 
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Fig. 2. Complete solution formed by combining several 
chromosomes. 
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Fig. 3. Chromosome for Hsiao code. 
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Hsiao code includes all of the low-order, odd-weight columns 
(8 weight-1 columns and 56 weight-3 columns) and 8 weight-5 
columns which are selected from 56 weight-5 columns. 
Therefore, a population has two kinds of chromosomes: 
selection chromosomes and association chromosomes as 
shown in Fig. 3.  

The selection chromosomes denote the list of 8 weight-5 
columns selected from 56. The selected columns are 
permutated with low, odd-weight columns to form a complete 
ECC. The associate chromosome is the same as in Hamming  
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Fig. 4. Complete solution for the Hsiao code. 
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code. It associates a bit position in memory and an ECC 
position. Along with the other association chromosomes, it 
denotes the permutation of the columns of H-matrix. Figure 4 
shows how the association chromosomes and selection 
chromosomes combine to form a complete solution. The 
complete solution includes the list of selected weight-5 
columns and the permutation of odd-weight columns. 

2. Fitness Function and Genetic Operators 

A. Fitness Function 

The goal of the proposed ECC design method is to find the 
ECC that consumes the least power. Instead of directly 
measuring the power consumed in the ECC, we estimate the 
power consumption by counting the number of transitions in 
the ECC check circuit, and use that estimate as a fitness value 
of a complete solution, as in [6], [7]. This approach is 
reasonable, since most of power dissipates when the outputs of 
the gates are switched [15].  

We now consider how to assign the fitness values to each 
individual (association chromosome or selection chromosome). 
In generation, an individual may join more than one complete 
solution, and different complete solutions will have different 
fitness values. The fitness of each individual chromosome in 
symbiotic evolution is calculated by summing the fitness 
values of all appearances of the individual in that generation 
(whether it is association or selection) and dividing the sum by 
the total number of appearances. More specifically, let us 
consider an association chromosome P which joins n complete 
solutions: 

1

2

( ),
( ),

( ).n

X XXPX XXXX
X XXXX XPXX

X XXXP XXXX

=
=

=

 

Then, the fitness value of P is computed by 

1

1( ) ( )
n

i
i

f P T X
n =

= ∑ ,                (2) 

where f(P) is the fitness value of P, and T(Xi) is the number of 
transitions with complete solution, Xi. Similarly, we can 
compute the fitness value of the selection chromosome. 
Therefore, we form complete parity check matrices by 
combining individuals and check the dissipated power and use 
it as a fitness value for symbiotic evolution. Table 1 gives the 
detailed steps in assigning a fitness value. 

B. Genetic Operators 

After each individual has been assigned a fitness value, we 
apply the genetic operators to create new solutions in the new 
generation. There are two types of genetic operators: crossover 
and mutation. The purpose of crossover is to exchange 
information between different potential solutions.  

We use a simple modified arithmetic crossover for Hamming 
code. The arithmetic crossover produces two complimentary 
linear combinations of parents. For example, assume that we 
have two parents, 1 2

1 1 1( )P P P=  and 1 2
2 2 2( )P P P= , where 

1 for 1, 2jP   j =  is a memory bit position and 2 for 1,2jP   j =  
is an input position of the ECC. We generate a random number  
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Table 1. Basic steps in assigning a fitness value to individuals during
symbiotic evolution. 

Step 1 Set the initial fitness records of individuals to zero. 

Step 2 
Randomly choose individuals to form a complete 
solution. 

Step 3 
Construct an H-matrix that corresponds to a complete 
solution and synthesize an ECC circuit. 

Step 4 Evaluate the ECC in terms of power consumption. 

Step 5 
Accumulate the fitness value of the ECC from its 
constituent individuals and record the number of 
appearances of individuals in the complete solutions. 

Step 6 Repeat steps 2 to 5 a sufficient number of times. 

Step 7 
Divide the accumulated fitness value of each individual 
by its number of appearances. 

 
 

r from a uniform distribution from 0 to 1 and create two new 
chromosomes, 1 2

1 1 1( )O O O=  and 1 2
2 2 2( ),O O O=  according 

to the following equations: 

1 1 2

2 1 2

(1 ) ,

(1 ) , for 1,2,

i i i

i i i

O rP r P

O r P rP    i=

⎢ ⎥= + −⎣ ⎦
⎢ ⎥= − +⎣ ⎦

       (3)                   

where ⋅⎢ ⎥⎣ ⎦  is the greatest integer function that will round any 
number down to the nearest integer. 

In Hsiao code, we have two chromosomes. For association 
chromosomes, we use the same crossover as in Hamming code. 
We now consider the selection chromosomes. Let S1 and S2 be 
two parent selection chromosomes of the Hsiao code, and 
represent them as  

1 2 8
1 1 1 1

1 2 8
2 2 2 2

( ),

( ),

S S S S

S S S S

=

=
               (4) 

where for 1, 2, ,8 and 1, 2i
jS   i   j= = is a weight-5 column 

selected from all weight-5 columns. The proposed crossover 
first generates r from a uniform distribution from 0 to 1. Then, 
two offspring, K1 and K2, are computed by 

1 2 8
1 1 1 1

1 2 8
2 2 2 2

( ),

( ),

K K K K

K K K K

=

=
             (5) 

where 

1 1 2

2 1 2

(1 ) ,

(1 ) , for 1, ,8

i i i

i i i

K rS r S

K r S rS    i= .

⎢ ⎥= + −⎣ ⎦
⎢ ⎥= − +⎣ ⎦

       (6)               

If 1 1
n mK K=  or 2 2

n mK K=  for n m≠ , we regenerate the 
random number r and create two new chromosomes until the 
genes of the selection part are all distinct. 

Mutation introduces genetic material that may have been 

missing from the initial population or lost during crossover 
operations [10]. In other words, mutation is used to alter a 
single chromosome and produce a new solution. In our study, 
we use uniform mutation [16]. This operator randomly selects 
one component, 1,2, , ,i q=  of the chromosome 

1( )k qP P P P=  and produces 1( ).k qP P P P′′ =  
Here, kP ′  is a uniform random number (1, )U β : 

' (1, ), ,

, ,
i

i

U i k
P

P i k

β =⎧⎪= ⎨
≠⎪⎩

              (7) 

where β is right boundary of the range. For the association 
chromosome, we use the parameter β=64. For the selection 
chromosome, we use β=56. As in the crossover operation, we 
repeat the mutation of the chromosomes until all genes of the 
selection chromosome are distinct.  

IV. Experiments 

1. Synthetic Data 

To demonstrate the performance of the symbiotic 
evolutionary ECC design proposed in this paper, we use three 
sets of 64-bit memory data taken from [7]. Figure 5 shows the 
characteristics of the three data sets.  

In data set 1, one and zero are equally likely for all bits. In 
data set 3, zero is more likely than one for the bits close to the 
MSB, and the two numbers are equally likely for the bits close 
to the LSB. The characteristics of data set 2 lie between the 
characteristics of data set 1 and data set 3. In this experiment, 
we use the genetic parameters given in Table 2. We also use 
elitism, such that each generation automatically recommends 
its best solution to the next generation. 

Since in ECC the major power dissipation comes from the 
switching of an XOR gate from one stable state to another, the 
switching activity is the dominant factor in power dissipation. 
To estimate the power consumption of each parity check 
matrix, we synthesize the corresponding circuit as a multiple-
output logic minimization with 2-input XOR gates, and we 
check the switching activity. The switching activities in gates 
are given by the number of transitions in the outputs of the   
2-input XOR gates. We make ten independent runs and 
compute the performances of the proposed algorithm and 
previous methods [6], [7]. Tables 3 and 4 compare the 
proposed method to previous methods in terms of power 
consumption for Hamming and Hsiao codes, respectively.  

In Table 3, the random method denotes the case in which 
Hamming codes are designed randomly. In Table 4, the 
random method denotes the case in which odd weight columns 
are selected randomly. They are also permutated randomly, and 
the simulation is repeated ten times. From the tables, we note  
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Fig. 5. Bitwise profiles of the memory data. 
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that the proposed method performs better than existing 
methods for both the Hamming and Hsiao codes. One 
explanation for the improved performance of the proposed 
method is that the specialization property of symbiotic 
evolution gives a good match to the individual and independent 
property of the columns of the parity check matrix. Therefore, 
symbiotic evolution encourages genetic diversity, which 
prevents the population from converging to a suboptimal 
solution and finds the best solutions in diverse and 

Table 2. Evolution parameters. 

Parameter Value 

Crossover rate 0.6 

Mutation rate 0.05 

Population size 3,000 

Generation 100 

Table 3. Performance comparison for Hamming code. 

 Random 
method

Ghosh et 
al. [6] 

Lee et al. 
[7] 

Proposed 
method

Worst 127,463 127,306 115,254

Best 127,031 127,010 114,074Data 1 

Average

128,382
127,223.2 

(135.7) 
127,167.1 

(99.4) 
114,740.8 

(461.1)
Worst 126,357 126,271 114,589

Best 125,979 125,917 113,120Data 2 

Average

128,026
126,163.5 

(150.2) 
126,089.1 

(115.8)
114,016.7 

(432.4)
Worst 123,575 123,503 111,664

Best 123,150 122,917 110,735Data 3 

Average

125,557
123,411.1 

(197.1) 
123,243.6 

(194.5)
111,303.1 

(312.8)
(  ): standard deviation 

Table 4. Performance comparison for Hsiao code. 

 
Random 
method 

Ghosh et al. 
[6] 

Lee et al. 
[7] 

Proposed 
method 

Worst 108,520 107,513 107,313 101,595 

Best 108,031 107,131 107,089 100,582 Data 1

Average
108,240.5 

(190.0) 
107,315.9 

(111.6) 
107,192.2 

(86.5) 
101,219 
(301.9) 

Worst 104,730 103,579 103,283 97,650 

Best 103,896 103,067 102,975 97,017 Data 2

Average
104,433.9 

(290.5) 
103,290.8 

(153.2) 
103,128.0 

(144.9) 
97,359.5 
(186.2) 

Worst 101,552 99,780 99,666 94,409 

Best 100,611 99,325 99,276 93,822 Data 3

Average
101,099.5 

(287.3) 
99,643.4 
(136.6) 

99,495.1 
(141.3) 

94,018.9 
(312.8) 

 (  ): standard deviation 

unconverged populations. This is in contrast to standard genetic 
strategies, which often stay at a local optimum. Figure 6 
compares the performance of both Hamming and Hsiao codes. 

To highlight the comparison between the algorithms, we 
normalize the power consumption of the four methods with 
respect to the random method and evaluate their relative 
performance. Compared to previous methods, the proposed 
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Fig. 6. Performance comparison of the proposed method with
previous methods. 
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method shows excellent results. This is especially true for data 
set 3, and this property makes the proposed method very 
promising. In real applications, one and zero are not equally 
likely, and the actual distribution would be closer to data set 3 
than to the other two sets. Hence, we expect the proposed 
method to perform well for real memory data. 

2. Real Data 

The proposed method was applied to a multimedia real data 
set to make a generalized statement concerning the validity of 
the proposed method. We collected the data from the UMIST 
face images [17]. Each image has 8-bit grey levels and the size 
of 92×112 pixels. Figure 7 shows example images from the 
database. 

We downsampled the images to 8×8 pixels and used the 
rows of the downsampled images as real data. We used the 
same evolution parameters as in the previous simulation, which 
are given in Table 2. We made ten independent runs to obtain 

 

Fig. 7. Sample images from the UMIST face database.  
 

Table 5. Power consumption with real data. 

 Random 
method

Ghosh et 
al. [6] 

Lee et al. 
[7] 

Proposed 
method

Worst 966,219 963,180 954,287

Best 932,461 925,801 925,306Hamming

Average

1,062,038
950,509.2 
(9,035.2) 

945,848.3 
(12,616.4)

942,163.8 
(10,097.1)

Worst 880,698 831,257 829,172 822,654

Best 877,402 821,570 819,727 812,007Hsiao 

Average 878,908.7 
(1,257.9)

826,720.9 
(3,524.3) 

821,926.6 
(2,786.1)

819,845.6 
(3,057.9)

 (  ): standard deviation

reliable results. In Table 5, the proposed method is compared 
with previous methods [6], [7] in terms of power consumption 
for Hamming and Hsiao codes. It can be seen that the proposed 
method shows better performance than the other methods for 
real data as for synthetic data. 

V. Conclusion 

In this paper, a new design method for ECCs has been 
proposed. The method employed the genetic algorithm with a 
symbiotic mechanism to minimize power consumption of ECCs. 
We formulated the selection of the optimal parity check matrix 
into a collection of independent and specialized optimization 
problems, and we presented the symbiotic evolution for the 
design of ECCs. The partial solutions in symbiotic evolution 
were diverse enough to obtain excellent power-saving 
performance. Our experimental results demonstrated the 
efficiency of the proposed method. 
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