• Title/Summary/Keyword: Design of Experiment(DOE)

Search Result 297, Processing Time 0.025 seconds

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming (실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계)

  • Lee, Dong-Woo;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

A Study on the Reduction of the Torsional Angular Acceleration on Chain Drive Wheel of Marine Diesel Engine

  • Kim, Sang-Jin;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.215-223
    • /
    • 2007
  • When the propulsion shafting system of marine diesel engine is designed. the vibratory stresses on shafts should be reviewed and be satisfied with limits which are laid down by classification societies In addition. the torsional vibration aspects for crankshaft of main engine are requested to be checked by engine designers. Especially. for the 4, 5, and 6-cylinder engines. the 2nd order moment compensator(s) may be installed to compensate the external moments of engine and not to excite the hull girder vibration. This moment compensator which is mounted on fore and/or after-end of engine is driven by the roller chain drive for some of MAN 2-stroke diesel engines. While the engine is running, the roller chain Is worn down, which causes the extension of roller chain. The chain therefore should be checked and tightened by periods in order to keep its functionality. However. when the torsional angular acceleration of chain drive exceeds the certain limit. the chain will suffer the excessive slack and transverse vibration. This may cause fatigue, wear or damage on the chain and the chain ultimately may be broken. The research object of this thesis is to review factors which affect the angular acceleration of chain drive and to find out how to decrease the angular acceleration of driving chain by checking factors which have a major contribution to acceleration reduction using the statistical method of DOE(design of experiment), correlation analysis and regression analysis methods.

Contribution Assessment of Roadheader Performance Indexes by Analysis of Variance (분산분석을 이용한 로드헤더 절삭시험 입출력 인자 간의 기여도 조사)

  • Mun-Gyu, Kim;Chang-Heon, Song;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.386-396
    • /
    • 2022
  • To analyze the influence of variables of roadheaders, the linear cutting testing data of pick cutter were collected from the former literatures. The input factors were set up as uniaxial compressive strength, cutting depth, cutting spacing, attack angle, skew angle, and output factors were determined as specific energy, average cutting force, maximum cutting force, average vertical force, and maximum vertical force. After composing a table of the design of experiment (DOE). The contribution level of each factor was calculated by analysis of variance (ANOVA). As a result, the factors having greatest influence on cutting force and specific energy were uniaxial compressive strength and cutting spacing.

Computational Study of the Shr oud Shape & the ProBeller Fan (Shroud 형상에 대한 해석적 연구 및 '프로벨러 홴' 소개)

  • Han, Jae-Oh;Yu, Seung-Hun;Mo, Jin-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.638-641
    • /
    • 2008
  • Computational investigation was conducted to study the effects of the shape parameter of shroud on the performance of the outdoor unit of an air-conditioners. For this study the Design of Experiment(4-factor 3-level) was created and the an automatic program was composed using VBA to reduce the load of pre-process for CFD. The estimated mathematical equation was produced from this analysis and it was found that the gap between fan and shroud affects more heavily than the other parameters. As a result, the composition of the best parameters was verified that its flow rate was increased by 10 percents and sound pressure level was reduced by 1.2 dBA compare with the worst. And finally, a kind of Propeller fan with blades which were attached to the shroud, so-called 'ProBeller Fan' was introduced in this study.

  • PDF

Process Capability Optimization of a LED Die Bonding Using Response Surface Analysis (반응표면분석법을 이용한 LED Die Bonding 공정능력 최적화)

  • Ha, Seok-Jae;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Kwang-Cheol;Choi, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4378-4384
    • /
    • 2012
  • In LED chip packaging, die bonding is a very important process which fixes the LED chip on the lead frame to provide enough strength for the next process. This paper focuses on the process optimization of a LED die bonding, which attaches small zener diode chip on PLCC LED package frame, using response surface analysis. Design of experiment (DOE) of 5 factors, 3 levels and 5 responses are considered, and the results are investigated. As the results, optimal conditions those satisfy all response objects can be derived.

Robust Design for WCDMA Node B Amplifier by Taguchi Method and HALT (High Accelerated Life Test) (Taguchi Method 와 HALT(High Accelerated Life Test)를 이용한 WCDMA Node B Amplifier 강건설계)

  • Lee, Jun-Seo;Roh, Young-Seok;Hong, Jin-Pyo;Ahn, Kwang-Eun;Yon, Chul-Heum
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.407-410
    • /
    • 2007
  • In the RRH (Radio Remote Head) of a WCDMA Node B System, an HPA (High Power Amplifier) is used in order to amplify the transmission RF signal. Upon designing an HPA, the design requirements demand that the intermodulation characteristics are optimized during design and that the stability of the characteristics is maintained in the field. In this DOE (Design of Experiments) research, a few vital factors that affect intermodulation characteristics were first selected; then, an optimal solution was produced for high reliability in a noisy environment in the field by employing the Taguchi Method, a statistical method used for a robust design. Furthermore, by employing HALT(High Accelerated Life Test) during the verification test, this experiment has verified that an HPA that was designed using the Taguchi Method proved to be a far more robust design than an HPA that was designed without using the method.

  • PDF

Six Sigma Robust Design for Railway Vehicle Suspension (철도차량 현수장치의 식스시그마 강건 설계)

  • Lee, Kwang-Ki;Park, Chan-Kyoung;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1132-1138
    • /
    • 2009
  • The spring constants of primary suspensions for a railway vehicle are optimized by a robust design process, in which the response surface models(RSMs) of their dynamic responses are constructed via the design of experiment(DOE). The robust design process requires an intensive computation to evaluate exactly a probabilistic feasibility for the robustness of dynamic responses with their probabilistic variances for the railway vehicle. In order to overcome the computational process, the process capability index $C_{pk}$ is introduced which enables not only to show the mean value and the scattering of the product quality to a certain extent, but also to normalize the objective functions irrespective of various different dimensions. This robust design, consequently, becomes to optimize the $C_{pk}$ subjected to constraints, i.e. 2, satisfying six sigma. The proposed method shows not only an improvement of some $C_{pk}$ violating the constraints obtained by the conventional optimization, but also a significant decrease of the variance of the $C_{pk}$.

Analysis of Ar Plasma Effects for Copper Nitride Passivation Formation via Design of Experiment (실험계획법을 통한 구리 질화물 패시베이션 형성을 위한 아르곤 플라즈마 영향 분석)

  • Park, Hae-Sung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • To protect the Cu surface from oxidation in air, a two-step plasma process using Ar and $N_2$ gases was studied to form a copper nitride passivation as an anti-oxidant layer. The Ar plasma removes contaminants on the Cu surface and it activates the surface to facilitate the reaction of copper and nitrogen atoms in the next $N_2$ plasma process. This study investigated the effect of Ar plasma on the formation of copper nitride passivation on Cu surface during the two-step plasma process through the full factorial design of experiment (DOE) method. According to XPS analysis, when using low RF power and pressure in the Ar plasma process, the peak area of copper oxides decreased while the peak area of copper nitrides increased. The main effect of copper nitride formation in Ar plasma process was RF power, and there was little interaction between plasma process parameters.

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.