• Title/Summary/Keyword: Design of Experiment(DOE)

Search Result 297, Processing Time 0.026 seconds

A Study on the Door Height Difference of the SBS Refrigerator (양문여닫이 냉장고에서 도아의 단차영향 연구)

  • Shin, Kwang-Cheol;Che, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.528-533
    • /
    • 2004
  • This paper deals with the issue of door height difference (DHD) which occurs for SBS refrigerator necessarily. In order to identify the cause of DHD, analysis of refrigerator structure and entire process from door manufacturing to usage have been investigated. From diverse experiments, it was found that the flatness of the floor was a main causing factor. In order to decrease the DHD , the effects of 6 design parameters to control of cabinet deformation have been investigated by using DOE(design of experiment) and finite element analysis. Based on the correlation equation, it was possible to estimate the DHD for new refrigerator design.

  • PDF

Design of a Steel Bar Breaking System in a Sled Test Facility (Sled Test용 Steel Bar Breaking System의 설계)

  • Cho, In-Yong;Lee, Hyung-Joo;Lee, Kwon-Hee;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.770-775
    • /
    • 2001
  • Steel bar breaking system is a component of a sled test system for automobile crashworthiness. It is a recent idea for the sled test. In a sled test, a crash pulse is given as a input made from a real test. The steel bar breaking system is designed to generate a certain crash pulse. Orthogonal arrays from design of experiments (DOE) are employed. The factors of the array are panel thickness and the number of steel bars, and the levels are candidate values of them. A simulation is utilized for the crash analysis. A commercial system called LS/DYNA3D is adopted. A test system is designed based on the results.

  • PDF

The Design of Doubly-fed Induction Generator for 2MW wind power system (2MW급 풍력발전시스템용 이중여자 발전기 설계)

  • Cho, D.H.;Hwang, S.Y.;Cho, S.H.;Lee, I.W.;Lee, S.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.257-260
    • /
    • 2006
  • This paper presents a design approach for wind power generator. Among several different generator systems, doubly-fed induction generator(DFIG) is selected for Hyosung 2MW wind turbine system from the view of cost and weight. The time step finite element method is applied to analyze the performance of DFIG, and design of experiment(DOE) is used as an optimization method.

  • PDF

A Study on Loss of Coolant Accident in Nuclear Power Plant Using DOE (실험계획법을 이용한 원자력 발전소에서의 냉각제 상실사고에 대한 연구)

  • Leem Young-Moon;Lee Sung-Mo
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.85-99
    • /
    • 2005
  • The main objective of this paper is to search whether containment vessel's best pressure may increase until how long when loss of coolant accident (LOCA) happened in containment vessel of Ulchin nuclear power plant 1 and 2. Another goal of this research is to find the influential factors that increase containment vessel pressure. Model for this research is Ulchin nuclear power plant 1 with 10 cycles. Data were collected by simulator of Ulchin nuclear power plant 1 and design of experiment was used for data analysis. For the experiment, seven factors that are going to influence in containment vessel pressure were chosen. It was found that fatter which influences in early rise of containment vessel pressure after LOCA is only explosion size. Also, containment vessel's best pressure (3.74 bar.a) was much lower than limit (4.86 bar.a) of FSAR (Final Safety Analysis Report).

Optimal Mechanism Design of In-pipe Cleaning Robot (관로 청소 로봇의 최적 설계)

  • Jung, C.D.;Chung, W.J.;Ahn, J.S.;Shin, G.S.;Kwon, S.J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE (실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구)

  • Kim, Dowan;Lee, Sunghwan;Lim, Jongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating (무전해 동도금 Throwing Power (TP) 및 두께 편차 개선)

  • Seo, Jung-Wook;Lee, Jin-Uk;Won, Yong-Sun
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

The Optimization of RF Atmospheric Pressure Plasma Treatment Process for Improving the Surface Free Energy of Polymethylmethacrylate (PMMA) (Polymethylmethacrylate (PMMA) 표면개질을 위한 RF 대기압 플라즈마 처리공정의 최적화)

  • Nam, Ki-Chun;Myung, Sung-Woon;Choi, Ho-Suk
    • Journal of Adhesion and Interface
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • This study investigated the influence of atmospheric plasma factors such as RF power, treatment time, the gap distance between discharge and sample, and the gas flow rate of Ar on the surface property by using the design of experiment (DOE) method. The plasma treatment time (s), plasma power (W), gap distance (mm) between discharge and sample, and flow rate of Ar gas were in order of important factors for changing the surface free energy of PMMA plates. As a result, the most effective factor for improving the surface free energy of PMMA plates is the distance (mm) from discharge glow to sample plate. Because of the interaction between plasma power (W) and treatment time (s), the power dose (J) factor which multiply plasma power (W) by treatment time (s) should be significantly considered. The optimum condition for maximizing the surface free energy of PMMA plate was found at 1500J of power dose. Through XPS and AFM analysis, we also observed the change of chemical composition, surface morphology and roughness before and after plasma treatment. It is considered that the change of surface free energy of PMMA plate with plasma treatment is influenced by the introduction of polar functional group as well as the increase of surface roughness.

  • PDF

Optimized Design of Low Voltage High Current Ferrite Planar Inductor for 10 MHz On-chip Power Module

  • Bae, Seok;Hong, Yang-Ki;Lee, Jae-Jin;Abo, Gavin;Jalli, Jeevan;Lyle, Andrew;Han, Hong-Mei;Donohoe, Gregory W.
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, design parameters of high Q (> 50), high current inductor for on-chip power module were optimized by 4 Xs 3 Ys DOE (Design of Experiment). Coil spacing, coil thickness, ferrite thickness, and permeability were assigned to Xs, and inductance (L) and Q factor at 10 MHz, and resonance frequency ($f_r$) were determined Ys. Effects of each X on the Ys were demonstrated and explained using known inductor theory. Multiple response optimizations were accomplished by three derived regression equations on the Ys. As a result, L of 125 nH, Q factor of 197.5, and $f_r$ of 316.3 MHz were obtained with coil space of $127\;{\mu}m$, Cu thickness of $67.8\;{\mu}m$, ferrite thickness of $130.3\;{\mu}m$, and permeability 156.5. Loss tan ${\delta}=0$ was assumed for the estimation. Accordingly, Q factor of about 60 is expected at tan ${\delta}=0.02$.

Development of a Semiconductor Odor Gas Sensor for the Measurement of CH3SH with Taguchi Experimental Design (Taguchi 실험 계획법에 의한 CH3SH 반도체 악취 가스 센서의 개발)

  • Kim Sun-Tae;Choi Il-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.783-792
    • /
    • 2004
  • In this study, a thick-film semiconductor odor gas sensor for the detection of $CH_3$SH was developed using SnO$_2$ as the main substrate and was investigated in terms of its sensitivity and reaction time. In the process of manufacturing the sensor, Taguchi's design of experiment (DOE) was applied to analyze the effects of a variety of parameters, including the substrate, the additives and the fabrication conditions, systematically and effectively. Eight trials of experiments could be possible using the 27 orthogonal array for the seven factors and two levels of condition, which originally demands 128 trials of experiments without DOE. The additives of Sb$_2$O$_{5}$ and PdCl$_2$ with the H$_2$PtCl$_{6}$ ㆍ6$H_2O$ catalyst were appeared to be important factors to improve the sensitivity, and CuO, TiO$_2$, V$_2$O$_{5}$ and PdO were less important. In addition, TiO$_2$, V$_2$O$_{5}$ and PdO would improve the reaction time of a sensor, and CuO, Sb$_2$O$_{5}$, PdCl$_2$ and H$_2$PtCl$_{6}$ㆍ6$H_2O$ were negligible. Being evaluated simultaneously in terms of both sensitivity and reaction time, the sensor showed the higher performance with the addition of TiO$_2$ and PdO, but the opposite results with the addition of CuO, V$_2$O$_{5}$, Sb$_2$O$_{5}$ and PdCl$_2$. The amount of additives were superior in the case of 1% than 4%. H$_2$PtCl$_{6}$ㆍ6$H_2O$ would play an important role for the increase of sensor performance as a catalyst.nce as a catalyst.