• Title/Summary/Keyword: Design load case

Search Result 930, Processing Time 0.034 seconds

An Analytical Study for the Stair Joints Constructed with Prefabricated Form System (선시공 조립식 거푸집 공법을 이용한 계단 접합부의 접합방식에 따른 해석적 연구)

  • Lee, Eun-Jin;Jin, Byung-Chang;Chang, Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-304
    • /
    • 2008
  • The stair joints constructed with prefabricated system are general method doing structure design at hinge. If you regarded joints to come in contact with a flight of stairs and a slope of stairs as hinge, the moment performance of joints is not in the least moment, so as the bending moment of the stair case is increased, the reinforcement increase. Also the use is decreased because increasing the joint damage of the vibration & fatigue load. No less the reason constructed with pin the stair joints because the construction efficiency of field work is useable. Recently, they are considering the construction efficiency, while the semi-rigid detail for bending performance of joints is proposed, but for now they don't reflect the detail. Therefore, we proposed that reflecting the method at design semi-rigid joints. We compared the moment performance with the stair joints designed at the rigid joints, semi-rigid joints and pin joints. The nonlinear behavior of staircase core statically indeterminate structure. The result of research is that a bending stiffness modulus bring to reflect the semi-rigid performance, the performance of the semi-rigid joint is better than pin joints, and that is judged the system better seismic and vibration performance because have excellent ductility more than rigid joint.

  • PDF

Simulation and Experimental Investigation of Reverse Drawing Process for Manufacture of High-Capacity Aluminum Liner (대용량 알루미늄 라이너의 성형을 위한 역 드로잉 공정 해석 및 실험)

  • Lee, Seungyun;Cho, Sungmin;Lee, Sunkyu;Lyu, Geunjun;Kim, Soyoung;Kang, Sunghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this work, finite element investigations were carried out to optimize reverse drawing process design for manufacture of high-capacity aluminum liner used in fuel cell vehicle. The tensile tests with aluminum alloy Al6061 annealed at $350^{\circ}C$ were carried out to obtain the flow stresses. In order to estimate more accurate flow stresses after necking, the flow stresses were estimated from the comparison of load vs. displacement curves which were obtained from experimental and simulation results of tensile tests. In case of finite element analyses of reverse drawing processes, it was focused on the effects of process designs such as punch and die designs, blank holding force, drawing ratio and the clearance between the punch and blank holder on the generation of wrinkle and fracture of the blank and partially heated punch. However, it was revealed that experimental results still show the fracture at the end of 2nd drawn cup, although partially heated punch is used. Nevertheless, the drawn cup can be used because the sufficient length of the drawn cup for the next flow forming process and spinning process was obtained.

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant (원자력 발전소용 버터플라이밸브의 내진해석)

  • Han, Sang-Uk;Ahn, Jun-Tae;Lee, Kyung-Chul;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1009-1015
    • /
    • 2012
  • Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

Evaluation of Seismic Performance of Pile-supported Wharves with Batter Piles through Response Spectrum Analysis (응답스펙트럼해석을 통한 경사말뚝이 설치된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, JongKwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.57-71
    • /
    • 2021
  • The pile-supported wharf is the port structure in which the upper deck is supported by piles or columns. By installing batter piles in this structure, horizontal load such as earthquake loads can be partially delivered as axial forces. The codes suggests using the response spectrum analysis as a preliminary design method for seismic design of pile-supported wharf, and suggests modeling the piles using virtual fixed points or soil spring methods for this analysis. Recently, several studies have been conducted on pile-supported wharves composed of vertical piles to derive a modeling method that appropriately simulates the dynamic response of structures during response spectrum analysis. However, studies related to the response spectrum analysis of pile-supported wharves with batter piles are insufficient so far. Therefore, this study performed the dynamic centrifuge model test and response spectrum analysis to evaluate the seismic performance according to the modeling method of pile-supported wharves with batter piles. As a result of test and analysis, it is confirmed that modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh) most appropriately simulates the actual response in the case of the pile-supported wharf with batter piles.

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Strength Prediction of PSC Box Girder Diaphragms Using 3-Dimensional Grid Strut-Tie Model Approach (3차원 격자 스트럿-타이 모델 방법을 이용한 PSC 박스거더 격벽부의 강도예측)

  • Park, Jung Woong;Kim, Tae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.841-848
    • /
    • 2006
  • There is a complex variation of stress in PSC anchorage zones and box girder diaphragms because of large concentrated load by prestress. According to the AASHTO LFRD design code, three-dimensional effects due to concentrated jacking loads shall be investigated using three-dimensional analysis procedures or may be approximated by considering separate submodels for two or more planes. In this case, the interaction of the submodels should be considered, and the model loads and results should be consistent. However, box girder diaphragms are 3-dimensional disturbed region which requires a fully three-dimensional model, and two-dimensional models are not satisfactory to model the flow of forces in diaphragms. In this study, the strengths of the prestressed box girder diaphragms are predicted using the 3-dimensional grid strut-tie model approach, which were tested to failure in University of Texas. According to the analysis results, the 3-dimensional strut-tie model approach can be possibly applied to the analysis and design of PSC box girder anchorage zones as a reasonable computer-aided approach with satisfied accuracy.

A Study on the Restoration of the Wangheungsa Temple's Wooden Pagoda (왕흥사 목탑의 복원 연구)

  • Kim, Kyeong-Pyo;Sung, Sang-Mo
    • Journal of architectural history
    • /
    • v.19 no.3
    • /
    • pp.7-29
    • /
    • 2010
  • The form of the Wangheungsa Temple's wooden pagoda site is that of the traditional form of the wooden pagodas constructed during the Baekjae Period. Likewise, it is an important ruin for conducting research on the form and type of the wooden pagodas constructed during the Baekjae Period. In particular, the method used for the installation of the central pillar's cornerstone is a new technique. The purpose of this research is to restore the ruin of the Wangheungsa Temple's wooden pagoda of the Baekjae Period that remains at the Wangheungsa Temple's wooden pagoda site. Until now, research conducted on the wooden pagoda took place mostly centered on the Hwangryongsa Temple's wooden pagoda. Meanwhile, the reality concerning Baekjae's wooden pagoda is one in which there were not many parallel cases pertain to the design for restoration. This research paper wants to conduct academic examination of the Wangheungsa Temple's wooden pagoda to organize the intention of design and design process in a simple manner. This research included review of the Baekjae Period's wooden pagoda related ruins and the review of the existing wooden pagoda ruin to analyze the wooden pagoda construction technique of the era. Then, current status of the Wangheungsa Temple's wooden pagoda site is identified to define the characteristics of the wooden pagoda, and to set up the layout format and the measure to estimate the size of the wooden pagoda in order to design each part. Ultimately, techniques and formats used for the restoration of the wooden pagoda were aligned with the wooden pagoda of the Baekjae Period. Basically, conditions that can be traced from the current status of the Wangheungsa Temple site excavation using the primary standards as the standard. Wangheungsa Temple's wooden pagoda was designed into the wooden pagoda of the Baekjae's prosperity phase. The plane was formed into $3{\times}3$ compartments to design into three tier pagoda. The height was decided by factoring in the distance between the East-West corridors, size of the compartment in the middle, and the view that is visible from above the terrace when entering into the waterway. Basically, the origin of the wooden structure format is based on the Goguryeo style, but also the linkage with China's southern regional styles and Japan's ancient wooden pagoda methods was factored in. As for the format of the central pillar, it looks as if the column that was erected after digging the ground was used when setting up the columns in the beginning. During the actual construction work of the wooden pagoda, central pillar looks as if it was erected by setting up the cornerstone on the ground. The reason that the reclaimed part of pillar that use the underground central cornerstone as the support was not utilized, was because the Eccentric Load of the central pillar's cornerstone was factored in the state of the layers of soil piled up one layer at a time that is repeated with the yellow clay and sandy clay and the yellow clay that were formed separately with the $80cm{\times}80cm$ angle at the upper part of the central pillar's cornerstone was factored in as well. Thus, it was presumed that the central pillar was erected in the actual design using the ground style format. It is possible to presume the cases in which the reclaimed part of pillar were used when constructed for the first time, but in which central pillar was installed later on, after the supplementary materials of the underground column is corroded. In this case, however, technique in which soil is piled up one layer at a time to lay down the foundation of a building structure cannot be the method used in that period, and the reclamation cannot fill up using the $80cm{\times}80cm$ angle. Thus, it was presumed that the layers of soil for building structure's foundation was solidified properly on top of the central pillar's cornerstone when the first wooden pagoda construction work was taking place, and that the ground style central pillar was erected on its upper part by placing the cornerstone once again. Wangheungsa Temple's wooden pagoda is significant from the structure development aspect of the Korean wooden pagodas along with the Hwangryongsa Temple's wooden pagoda. Wangheungsa Temple's wooden pagoda construction technique which was developed during the prosperity phase of the Baekjae Period is presumed to have served as a role model for the construction of the Iksan Mireuksa Temple's wooden pagoda and Hwangryongsa Temple's wooden pagoda. With the plan to complement the work further by excavating more, the basic wooden pagoda model was set up for this research. Wangheungsa Temple's wooden pagoda was constructed as at the Baekjae Kingdom wide initiative, and it was the starting point for the construction of superb pagoda using state of the art construction techniques of the era during the Baekjae's prosperous years, amidst the utmost interest of all the Baekjae populace. Starting out from its inherent nature of enshrining Sakyamuni's ashes, it served as the model that represented the unity of all the Baekjae populace and the spirit of the Baekjae people. It interpreted these in the most mature manner on the Korean peninsula at the time.

A study on drainage characteristics and load amount evaluation by crop type in a hydroponic cultivation facility of horticultural complex (수경재배 시설원예단지 작물 유형별 배액 특성 및 부하량 평가 연구)

  • Jin, Yujeong;Kang, Taegyoung;Lim, Ryugab;Kim, Hyunwoo;Kang, Donghyeon;Park, Minjung;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.352-363
    • /
    • 2021
  • The purpose of this study was to evaluate the load of nutrients contained in the drainage discharged from the facility horticultural complex and to use them for re-use of fluids and design for introduction of water treatment plants. Representative hydroponic cultivation crops were selected as tomato, paprika, cucumber, and strawberry, and the total number of samples analyzed for water quality was 80. As a result of the analysis, since various fertilizer components such as N, P, K+, Na+, Mg2+, Ca2+, Si4+, HCO3-, Cl-, S2-, Fe, Mn, Cu, Zn, Mo and B are contained at very high concentrations in the drainage, the need for water treatment was confirmed. Through statistical analysis, it was analyzed that the drainage concentration of strawberries was lower than that of tomatoes, paprika, and cucumbers. In the case of tomatoes, these essential ion concentrations are the highest, so it was confirmed that they are subject to valuable resources in terms of reuse of fertilizers. The load of N and P of the drainage discharged from the facility horticultural complex 1m2 was analyzed. For N, the daily processing capacity of 4.0 kg of tomatoes, 3.3 kg of paprika, 3.0 kg of cucumbers, and 1.5 kg of strawberries was calculated based on 1 ha. It was suggested that the P concentration needs a scale and capacity that can handle 0.5 kg of tomatoes, 0.6 kg of paprika, 0.4 kg of cucumber, and 0.2 kg of strawberries per day. Through this study, the amount of nitrogen and phosphorus contained in the drainage discharged from the greenhouse of each crop was evaluated to analyze the economy. In addition, it was expected to be used as basic data that can be used to calculate the treatment capacity to be reflected when introducing water treatment facilities in facility horticultural complexes for sustainable agriculture.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.