Browse > Article
http://dx.doi.org/10.3741/JKWRA.2012.45.8.795

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model  

Choi, Jae-Wan (Water Pollution Load Management Research Division, National Institute of Environmental Research, Environmental Research Complex)
Ryu, Ji-Chul (Water Pollution Load Management Research Division, National Institute of Environmental Research, Environmental Research Complex)
Kim, Ik-Jae (Division of Water and Environment, Korea Environment Institute)
Lim, Kyoung-Jae (Dept. of Regional Infrastructures Engrg., Kangwon National University)
Publication Information
Journal of Korea Water Resources Association / v.45, no.8, 2012 , pp. 795-804 More about this Journal
Abstract
Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.
Keywords
rainfall intensity; runoff; sediment yield; peak runoff; WEPP;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 건설교통부 (2000). 수자원 관리기법개발연구조사 보고서 : 지역적 설계강우의 시간적분포. 한국건설기술연구원.
2 김상민, 임상준, 이상호, 김형호, 마호섭, 정원옥(2009). "국립공원내 홍수피해 저감을 위한 미계측 산림 지역의 설계홍수량 추정." 한국농공학회논문집, 한국농공학회, 제51 권, 제5호, pp. 107-113.   과학기술학회마을   DOI
3 박상덕, 신승숙 (2011). "산불사면에 대한 토양침식모형의 적용 평가-RUSLE, WEPP, SEMMA." 대한토목학회논문집, 대한토목학회, 제31권, 제3B호, pp. 221-238.
4 손정호 (2002). WEPP 모형을 이용한 토양유실량 추정. 석사학위논문, 서울대학교
5 신형섭, 이규호, 박종화(2009). "모래와 실트의 탁수에 대한 분광특성 분석." 한국농공학회논문집, 한국농공학회, 제 51권, 제3호, pp. 37-43.   과학기술학회마을   DOI
6 이정규, 추현재 (2006). "Huff의 4분위법을 이용한 지속기간별 연 최대치 강우의 시간분포 특성연구." 대한토목학회논문집, 대한토목학회, 제26권, 제5B호, pp. 519-528.   과학기술학회마을
7 최재완, 현근우, 이재운, 신동석, 김기성, 박윤식, 김종건, 임경재 (2009). "WEPP Watershed Version을 이용한 홍천군 자운리 농경지 토양유실 예측 및 경사도에 따른 토양유실량 평가." 수질보전 한국물환경학회지, 수질보전 한국물환경학회, 제25권, 제3호, pp. 441-451.   과학기술학회마을
8 홍종선 (2009). WEPP과 SEMMA를 이용한 산지유역 토사유출량 예측과 소유역 분할 효과. 석사학위논문, 강릉대학교.
9 환경부 (2008). 비점오염저감시설의 설치 및 관리 운영 매뉴얼. 환경부.
10 현근우, 허범녕, 허인량, 정원구, 고상열, 이석종, 이태욱, 박성빈, 김영진, 김성석 (2008). 이중원통형침사지를 이용한 고랭지밭 흙탕물 농도 저감에 관한 연구. 강원도 보건환경연구원 보고서.
11 Flanagan, D.C., and Livingston, S.J. (1995).WEPP User Summary. NSERL Report 11, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana.
12 Fredlund, D.G., and Rahardjo, H. (1995). Soil Mechanics for Unsaturated Soils. John Wiey and Sons, INC.
13 Lim, K.J., Sagong, M., Engel, B.A., Tang, Z., Choi, J. D., and Kim, K.S. (2005). "GIS-based sediment assessment tool." CATENA, Vol. 64, No. 1, pp. 61-80.   DOI   ScienceOn
14 Renard, R.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. (1997). Predicting soil erosion by water, a guide to conservation planning with the revised universal soil loss equation (RUSLE), Agric. Handbook no. 703 USDA-ARS, Washington, D.C., pp. 384.
15 Williams, J.R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In Present and prospective technology for predicting sediment yield and sources, Proceedings of the sediment yield workshop, pp. 244-252.
16 Wischmeier, W.H., and Smith, D.D. (1987). Predicting Rainfall Erosion Losses, A Guide to Conservation Planning, Agric. Handbook no. 537, USDA-ARS, Washington, D.C., pp. 85.