• Title/Summary/Keyword: Design for manufacturing

Search Result 6,055, Processing Time 0.039 seconds

A Study on Property Change of Auto Body Color Design (자동차 바디컬러 디자인의 속성 변화에 관한 연구)

  • Cho, Kyung-Sil;Lee, Myung-Ki
    • Archives of design research
    • /
    • v.19 no.1 s.63
    • /
    • pp.253-262
    • /
    • 2006
  • Research of color has been developed and also has raised consumer desire through changing from a tool to pursue curiosity or beauty to a tool creating effects in the 20th century. People have been interested in colors as a dynamic expression of results since the color TV appeared. The meaning of colors has been recently diversified as the roles of colors became important to the emotional aspects of design. While auto colors have developed along with such changes of the times, black led the color trend during the first half of the 20th century from 1900 to 1950, a transitional period of economic growth and world war. Since then, automobile production has increased apace with the rapid economic growth throughout the world and automobiles became the most expensive item out of the goods that people use. Accordingly, increasing production induced facility investment in mass production and a technology leveling was achieved. Auto manufacturing processes are very complicated, auto makers gradually recognized that software changes such as to colors or materials was an easier way for the improvement of brand identity as opposed to hardware changes such as the mechanical or design components of the body. Color planning and development systems were segmented in various aspects. In the segmentation issue, pigment technology and painting methods are important elements that have an influence on body colors and have a higher technical correlation with colors than in other industries. In other words, the advanced mixture of pigments is creating new body colors that have not existed previously. This diversifies the painting structure and methods and so maximizes the transparency and depth of body colors. Thus, body colors that are closely related to technical factors will increase in the future and research on color preferences by region have been systemized to cope with global competition due to the expansion and change of auto export regions.

  • PDF

Low Temperature Thermal Desorption (LTTD) Treatment of Contaminated Soil

  • Alistair Montgomery;Joo, Wan-Ho;Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.44-52
    • /
    • 2002
  • Low temperature thermal desorption (LTTD) has become one of the cornerstone technologies used for the treatment of contaminated soils and sediments in the United States. LTTD technology was first used in the mid-1980s for soil treatment on sites managed under the Comprehensive Environmental Respones, Compensation and Liability Act (CERCLA) or Superfund. Implementation was facilitated by CERCLA regulations that require only that spplicable regulations shall be met thus avoiding the need for protracted and expensive permit applications for thermal treatment equipment. The initial equipment designs used typically came from technology transfer sources. Asphalt manufacturing plants were converted to direct-fired LTTD systems, and conventional calciners were adapted for use as indirect-fired LTTD systems. Other innovative designs included hot sand recycle technology (initially developed for synfuels production from tar sand and oil shale), recycle sweep gas, travelling belts and batch-charged vacuum chambers, among others. These systems were used to treat soil contaminated with total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs) and dioxin with varying degrees of success. Ultimately, performance and cost considerations established the suite of systems that are used for LTTD soil treatment applications today. This paper briefly reviews the develpoment of LTTD systems and summarizes the design, performance and cost characteristics of the equipment in use today. Designs reviewed include continuous feed direct-fired and indirect-fired equipment, batch feed systems and in-situ equipment. Performance is compared in terms of before-and-after contaminant levels in the soil and permissible emissions levels in the stack gas vented to the atmosphere. The review of air emissions standards includes a review of regulations in the U.S. and the European Union (EU). Key cost centers for the mobilization and operation of LTTD equipment are identified and compared for the different types of LTTD systems in use today. A work chart is provided for the selection of the optmum LTTD system for site-specific applications. LTTD technology continues to be a cornerstone technology for soil treatment in the U.S. and elsewhere. Examples of leading-edge LTTD technologies developed in the U.S. that are now being delivered locally in global projects are described.

  • PDF

Capacity of Distribution Science and the Energy Distribution Role for Visegrád Group Cooperation (비셰그라드 그룹의 협력에 따른 유통과학의 역량과 에너지유통의 역할)

  • Seo, Daesung
    • Journal of Distribution Science
    • /
    • v.13 no.12
    • /
    • pp.95-103
    • /
    • 2015
  • Purpose - The Visegrád Group cooperation of the past 14 years and that of V4 for the past 20 years has very important significance in the 21st century that must be maintained. This cooperation is valuable because of the trade routes that connect northern Poland to the Balkans in southern Croatia, which forman important basis for the resuscitation of Central European development. Currently, because of the European manufacturing base and industrial development, an energy supply and stable energy distribution networks have been introduced to secure cooperation and not competition within the Visegrád Group. This paper's research emphasizes the supply chain hub in neighboring countries. Although Central and Eastern European countries are small, they can provide a competitive response to Western Europe if they collaborate with the V4 group and other countries. Research design, data, and methodology - The subjects of this study in the Visegrád Group area are related to the development of Marketing and Distribution Sciences in the integrated European Union. In relation to the existing energy infrastructure, construction companies and financial institutions benefit from large-scale construction projects. Existing or new infrastructure facilities among the V4 must comply with the preconditions of regional energy markets. The network of emerging markets is changing into a European-logistics hub of new markets. This hub is closely associated with the economic development of European self-sustainment given that energy for distribution and consumption is imported from Russia. Therefore, this paper indirectly provides data on the regional distribution of energy as alternative bases in Europe for market expansion to Asia. Results - As a result, it appeared unlikely that V4 failed to implement homogeneity following the standards of Western Europe, as proposed by the EU. Throughout European history, individuals have gathered in Central Europe as an innovation hub. Currently, the region is being established independently for energy industrial development and not for tourism development, and is expected to play a central role in innovation and distribution consumption. Therefore, similar to Western and Northern Europe, V4 only appears to engage in distribution consumption on the basis of the identity that it formed for itself. This area is expected to either create a regional platform or a voice over a single economic policy. Conclusions - To this end, regarding the distribution of consumer groups within and outside the region, the V4 group is expected to be established for various policy areas and as a Eurasian outpost of trade and distribution logistics. In addition, given its purpose of engaging in the distribution of energy cooperation and trade clusters, the Visegrád Group will be in charge of the center axis of the bridge for distribution logistics trading partners from the Western Balkans to Caucasus and Eastern Europe. Thus, the Visegrád Group is entering this region as a platform for market share by enabling all or any investor can gain greater industrial benefits.

Comparison of retentive force and wear pattern of Locator® and ADD-TOC attachments combined with CAD-CAM milled bar

  • Chae, Sung-Ki;Cho, Won-Tak;Choi, Jae-Won;Bae, Eun-Bin;Bae, Ji-Hyeon;Bae, Gang-Ho;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.12-21
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate changes in retention and wear pattern of Locator® and ADD-TOC attachments on a digital milled bar by performing chewing simulation and repeated insertion/removal of prostheses in fully edentulous models. MATERIALS AND METHODS. Locator (Locator®; Zest Anchors Inc., Escondido, CA, USA) was selected as the control group and ADD-TOC (ADD-TOC; PNUAdd Co., Ltd., Busan, Republic of Korea) as the experimental group. A CAD-CAM milled bar was mounted on a master model and 3 threaded holes for connecting a bar attachment was formed using a tap. Locator and ADD-TOC attachments were then attached to the milled bar. Simulated mastication and repeated insertion/removal were performed over 400,000 cyclic loadings and 1,080 insertions/removals, respectively. Wear patterns on deformed attachment were investigated by field emission scanning electron microscopy. RESULTS. For the ADD-TOC attachments, chewing simulation and repeated insertion/removal resulted in a mean initial retentive force of 24.43 ± 4.89 N, which were significantly lower than that of the Locator attachment, 34.33 ± 8.25 N (P < .05). Amounts of retention loss relative to baseline for the Locator and ADD-TOC attachments were 21.74 ± 7.07 and 8.98 ± 5.76 N (P < .05). CONCLUSION. CAD-CAM milled bar with the ADD-TOC attachment had a lower initial retentive force than the Locator attachment. However, the ADD-TOC attachment might be suitable for long-term use as it showed less deformation and had a higher retentive force after simulated mastication and insertion/removal repetitions.

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

Comparison of the Marginal and Internal Fit on the Cast and CAD-CAM Cores (주조에 의한 Core와 CAD-CAM에 의한 Core의 적합도 비교평가)

  • Han, Man-So;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.12 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • Dental CAD (computer-aided design)/CAM (computer-aided manufacturing) systems facilitate the use of zirconia core for all-ceramic crown. The purpose of this study was to evaluate the marginal and internal fit of zirconia core fabricated using a dental CAD/CAM system and to compare the fit of metal cores by a conventional method. Ten identical cases of single coping study models (abutment of teeth 11) were manufactured and scanned. Ten zirconia cores were fabricated using dental CAD/CAM system. An experienced dental technician fabricated 10 samples of metal cores for the control group using the lost wax technique. Marginal and internal fit was measured by the silicone replica technique. Fit was measured with magnification of 160 using a digital Microscope. Margin, rounded chamfer, axial wall and incisal fits were measured for comparison. T-test of independent sample for statistical analysis was executed with SPSS 12.0 for Windows (SPSS Inc., Chicago, IL, USA) (${\alpha}$=0.05). The mean (SD) for marginal, rounded chamfer, axial wall and incisal were: $97.0\;(25.3){\mu}m$, $104.0\;(22.0){\mu}m$, $59.6\;(21.4){\mu}m$ and $124.8\;(33.3){\mu}m$ for the zirconia core group, and $785.2\;(18.4){\mu}m$, $83.8\;(15.1){\mu}m$, $42.7\;(9.6){\mu}m$ and $83.4\;(14.4){\mu}m$ for the metal core group. T-test showed significant differences between groups for margin (p<.001), rounded chamfer (p<.001), axial wall (p<.001) and incisal (p<.001). But zirconia core group observed that the marginal and internal fit values in the present study were within clinically acceptable range.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Current status of Atomic and Molecular Data for Low-Temperature Plasmas

  • Yoon, Jung-Sik;Song, Mi-Young;Kwon, Deuk-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.64-64
    • /
    • 2015
  • Control of plasma processing methodologies can only occur by obtaining a thorough understanding of the physical and chemical properties of plasmas. However, all plasma processes are currently used in the industry with an incomplete understanding of the coupled chemical and physical properties of the plasma involved. Thus, they are often 'non-predictive' and hence it is not possible to alter the manufacturing process without the risk of considerable product loss. Only a more comprehensive understanding of such processes will allow models of such plasmas to be constructed that in turn can be used to design the next generation of plasma reactors. Developing such models and gaining a detailed understanding of the physical and chemical mechanisms within plasma systems is intricately linked to our knowledge of the key interactions within the plasma and thus the status of the database for characterizing electron, ion and photon interactions with those atomic and molecular species within the plasma and knowledge of both the cross-sections and reaction rates for such collisions, both in the gaseous phase and on the surfaces of the plasma reactor. The compilation of databases required for understanding most plasmas remains inadequate. The spectroscopic database required for monitoring both technological and fusion plasmas and thence deriving fundamental quantities such as chemical composition, neutral, electron and ion temperatures is incomplete with several gaps in our knowledge of many molecular spectra, particularly for radicals and excited (vibrational and electronic) species. However, the compilation of fundamental atomic and molecular data required for such plasma databases is rarely a coherent, planned research program, instead it is a parasitic process. The plasma community is a rapacious user of atomic and molecular data but is increasingly faced with a deficit of data necessary to both interpret observations and build models that can be used to develop the next-generation plasma tools that will continue the scientific and technological progress of the late 20th and early 21st century. It is therefore necessary to both compile and curate the A&M data we do have and thence identify missing data needed by the plasma community (and other user communities). Such data may then be acquired using a mixture of benchmarking experiments and theoretical formalisms. However, equally important is the need for the scientific/technological community to recognize the need to support the value of such databases and the underlying fundamental A&M that populates them. This must be conveyed to funders who are currently attracted to more apparent high-profile projects.

  • PDF

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

Modeling and Simulation for Predicting the Impact of Hydraulic Breaker (유압 브레이커의 충격량 예측을 위한 모델링과 해석)

  • Kim, Sung-Hyun;Chung, Jaeho;Baek, Dong-Cheon;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.741-749
    • /
    • 2019
  • A hydraulic breaker attached to an excavator is a kind of constructuion equipment which is used for the disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. Therefore, the performance of the hydraulic breaker is mainly evaluated by the impact quantity and impact efficiency, which is an important factor for both the manufacturer and the user. In this paper, modeling and simulation for the prediction of the impact of the hydraulic breaker was conducted according to hydraulic pressure area and operating conditions of the hydraulic valve and piston using the commercial tools SimulationX for the 20ton hydraulic breaker which is mainly used in construction site. In order to verify the reliability of modeling and simulation, the results of previous experimental studies were compared and verified. The results of this study are expected to be useful for predicting the impact of the hydraulic breaker at the design stage before manufacturing and for studying parameters for improving the impact quantity. In addition, the manufacturer predicts that the development time and cost will be reduced through trial and error prevention by predicting the impact of the hydraulic breaker through the results of this paper.