DOI QR코드

DOI QR Code

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum

진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구

  • Min, Sun-Hong (Korea Institute of Radiological and Medical Sciences, KIRAMS) ;
  • Kwon, Ohjoon (Institute for Basic Science Center for Axion and Precision Physics Research) ;
  • Sattorov, Matlabjon (Center for THz-Driven Biological Systems, Department of Physics and Astronomy, Seoul National University & Seoul-Teracom, Inc.) ;
  • Baek, In-Keun (Manufacturing Technology Center, Samsung Electronics Co., Ltd.) ;
  • Kim, Seontae (Center for THz-Driven Biological Systems, Department of Physics and Astronomy, Seoul National University) ;
  • Hong, Dongpyo (Center for THz-Driven Biological Systems, Department of Physics and Astronomy, Seoul National University) ;
  • Jang, Jungmin (Center for THz-Driven Biological Systems, Department of Physics and Astronomy, Seoul National University) ;
  • Bhattacharya, Ranajoy (Hanwha Corporation) ;
  • Cho, Ilsung (Korea Institute of Radiological and Medical Sciences, KIRAMS) ;
  • Kim, Byungsu (Korea Institute of Radiological and Medical Sciences, KIRAMS) ;
  • Park, Chawon (Korea Institute of Radiological and Medical Sciences, KIRAMS) ;
  • Jung, Wongyun (Korea Institute of Radiological and Medical Sciences, KIRAMS) ;
  • Park, Seunghyuk (Hanwha Corporation) ;
  • Park, Gun-Sik (Center for THz-Driven Biological Systems, Department of Physics and Astronomy, Seoul National University & Seoul-Teracom, Inc.)
  • 민선홍 (한국원자력의학원) ;
  • 권오준 (기초과학연구원 액시온가속기사업단) ;
  • 사토로프마틀랍 (서울대학교 물리천문학부 테라헤르츠파생체제어연구단 & 서울테라콤(주)) ;
  • 백인근 (삼성전자 생산기술연구소) ;
  • 김선태 (서울대학교 물리천문학부 테라헤르츠파생체제어연구단) ;
  • 홍동표 (서울대학교 물리천문학부 테라헤르츠파생체제어연구단) ;
  • 장정민 (서울대학교 물리천문학부 테라헤르츠파생체제어연구단) ;
  • 라나조이 (한화) ;
  • 조일성 (한국원자력의학원) ;
  • 김병수 (한국원자력의학원) ;
  • 박차원 (한국원자력의학원) ;
  • 정원균 (한국원자력의학원) ;
  • 박승혁 (한화) ;
  • 박건식 (서울대학교 물리천문학부 테라헤르츠파생체제어연구단 & 서울테라콤(주))
  • Received : 2017.11.30
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

일반적으로 전자파의 동작 주파수가 높아짐에 따라 최대 출력이 작아지고, 파동의 파장도 작아지기 때문에, 회로의 크기도 작아질 수밖에 없다. 특히, kW급 이상의 고출력 테라헤르츠파 주파수 대역의 회로를 제작하려면, ${\mu}m{\sim}mm$ 규모의 회로 크기 문제 때문에 제작에 한계점이 있다. 이러한 한계점을 극복하기 위해 본 논문에서는 회로의 지름이 2.4 cm 정도의 원통형으로, 0.1 THz~0.3 GW급의 발생원 설계 기술을 제안한다. 판드로모티브 힘이 생기는 플라즈마 항적장 가속원리와 인위적인 유전체 활용한 체렌코프방사 발생 기술 기반의 고출력 전자파 발생원의 최적화된 설계를 위해 모델링 및 전산모사를 수행하였다. 객관적인 검증 과정을 통해 회로의 크기에 제한을 덜 받도록 하는 대구경 형태의 고출력 테라헤르츠파 진공소자 제작이 용이하도록 효과적인 설계의 가이드라인을 제시하였다.

Keywords

References

  1. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, "Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide," Physical Review Letters, vol. 103, p. 095003, Aug. 2009. https://doi.org/10.1103/PhysRevLett.103.095003
  2. C. Jing, A. Kanareykin, J. G. Power, M. Conde, W. Liu, and S. Antipov, et al., "Experimental demonstration of wakefield acceleration in a tunable dielectric loaded accelerating structure," Physical Review Letters, vol. 106, p. 164802, Apr. 2011. https://doi.org/10.1103/PhysRevLett.106.164802
  3. G. Andonian, D. Stratakis, M. Babzien, S. Barber, M. Fedurin, and E. Hemsing, et al., "Dielectric wakefield acceleration of a relativistic electron beam in a slabsymmetric dielectric lined waveguide," Physical Review Letters, vol. 108, p. 244801, Jun. 2012. https://doi.org/10.1103/PhysRevLett.108.244801
  4. B. D. O'Shea, G. Andonian, S. K. Barber, K. L. Fitzmorris, S. Hakimi, and J. Harrison, et al., "Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators," Nature Communications, vol. 7, p. 12763, Sep. 2016. https://doi.org/10.1038/ncomms12763
  5. S. H. Min, O. Kwon, M. Sattorov, H. Jung, I. K. Baek, and S. Kim, et al., "Effects on electronics exposed to highpower microwaves on the basis of a relativistic backwardwave oscillator operating on the X-band," Journal of Electromagnetic Waves and Applications, vol. 31, no. 17, pp. 1875-1901, Jul. 2017. https://doi.org/10.1080/09205071.2017.1354728