• Title/Summary/Keyword: Design failure curve

Search Result 142, Processing Time 0.043 seconds

3-Dimensional Design Failure Curve of Marine Silty Sand under Different Confining Pressures Subjected to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 구속압에 따른 3차원 설계파괴곡선 산정)

  • Suwon, Son;Jongchan, Yoon;Jinman, Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.25-31
    • /
    • 2022
  • Unlike structures installed on land, the structures installed on the offshore ground must consider long-term cyclic loads such as wave loads, wind loads and tidal loads at sea. Therefore, it is important to analyze the behavior of the ground subjected to long-term cyclic loads in order to design a structure installed on the ocean ground. In this paper, cyclic simple shear tests were performed to analyze the ground behavior for long-term cyclic loads according to the confining pressure, and a three-dimensional design failure curve was prepared that can easily check the failure characteristics according to the confining pressure. As a result of the analysis, it was confirmed that the position of the design failure curve is different depending on the confining pressure even under the same conditions of the cyclic shear stress ratio and the average shear stress ratio, and the number of cyclic loads reaching failure is affected by the confining pressure. From the created 3-D design failure curve under different confining pressure, the tendency and approximate value of the design failure curve according to the confining pressure can be estimated.

Shear Capacity Curve Model for Seismic Design of Circular RC Bridge Columns (RC 원형교각의 내진설계를 위한 전단성능곡선)

  • Lee Jae Hoon;Ko Seong Hyun;Choi Jin Ho;Kwon Soon Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.93-96
    • /
    • 2005
  • Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

  • PDF

Evaluation of Shear Capacity Curve Model for Seismic Design (내진설계를 위한 전단성능곡선 모델의 평가)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.186-189
    • /
    • 2006
  • Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a proposed modified shear capacity curve model is compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale and 7 small scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

  • PDF

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

Construction of a Design Curve for Fatigue Model Using Bootstrap Method (붓스트랩방법을 이용한 피로모형의 설계곡선 설정)

  • 서순근;조유희
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.106-119
    • /
    • 2002
  • The fatigue curve with estimated parameters represents the estimate of the median or mean life at a given applied stress But, in order to assist a designer in making decisions regarding the fatigue failure mode, it is common practice to construct a design curve on the lower or safe side of data. In this study, to overcome the limitations(i.e., no runout, equal variance, and quality of the approximation, etc) of Shen, Wirsching, and Cashman's method which suggested the approximate design curve for nonlinear models using tolerance interval constructed by Owen's method, an algorithm to find design curves under the fatigue model using a parametric bootstrap method, is proposed and illustrated with multiple fatigue data sets.

The Novel Concepts for Reliability Technology

  • Ryu, DongSu
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.201-206
    • /
    • 2005
  • Starting with the meaning of the word quality, diverse concepts connoted by the term are examined. Instead of a bathtub curve, the desirable shape of a failure rate covering the entire life of a good product, which might be called hockey-stick line, is introduced. From the hockey-stick line and the definition of reliability, two measurements are extracted. The terms r-reliability (failure rate) and durability (product life) are explained. The conceptual analysis of failure mechanics explains that reliability technology pertains to design area. The desirable shape of hazard rate curve of electronic items, hockey-stick line, clarifies that Mean-Time-to-failure (MTTF) as the inverse of failure rate can be regarded a nominal life. And Bx life, different from MTTF, is explained. Reliability relationships between components and set products are explained. Reshaped definitions of r-reliability and durability are recommended. The procedure to improve reliability and the reasons for failing to identify failure mode are clarified in order to search right solutions. And generalized Life-Stress failure model is recommended for the calculation of acceleration factor.

Development and Application of Detailed Procedure to Evaluate Fatigue Integrity for Major Components Considering Operating Conditions in the Nuclear Power Plant (원전 운전환경을 고려한 주기기 피로 건전성 상세평가 절차개발 및 적용)

  • Kim, Byong-Sup;Kim, Tae-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.20-25
    • /
    • 2006
  • In the design of class 1 components to apply ASME code section III NB, a fatigue is considered as one of the important failure mechanisms. Fatigue analysis procedure and standard fatigue design curve(S-N curve) is suggested in ASME code, which had to be performed to meet the integrity of components at the design step. As the plant life extension for operating power plants and the long-lived plant design, however, are being progressed, the fact which the existing ASME fatigue design curve can not consider fatigue effects sufficiently comes to the fore. To find the technical solution for these problems, a number of researches and discussion are continued up to now. In this study, the detailed fatigue analyses using the 3 dimensional modeling for the fatigue-weakened components were performed to develop the optimized fatigue analysis procedure and their results are compared with other reference solutions.

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.

Experimental study on the Behavior of RC Bridge Piers with Various Aspect Ratio (철근 콘크리트 교각의 형상비에 따른 거동 특성에 관한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Kim, Yon-Gon;Chung, Young-Soo;Lee, Jae-Hoon;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.47-52
    • /
    • 2001
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable fur ductile seismic response. It is, however, believed that there are not many experimental research works fur shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF

Quasi-Static Test for Seismic Performance of Reinforced Concrete Bridge Piers with Lap Splice (준정적실험에 의한 실물 원형교각의 내진성능평가를 위한 실험적 연구)

  • Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon;Choi, Jin-Ho;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.941-946
    • /
    • 2002
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable for ductile seismic response. It is, however, believed that there are not many experimental research works for shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF