• Title/Summary/Keyword: Design constraints

Search Result 2,166, Processing Time 0.029 seconds

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

Homogeneous Magnet Design Technique Using Evolution Strategy (진화알고리즘을 이용한 균즐자장 발생용 마그네트의 최적설계)

  • 송명곤;김동훈;이상진
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.114-118
    • /
    • 2002
  • We introduce a design technique for homogeneous magnets using evolution strategy. The method has several advantages over existing techniques including: it allows complete flexibility in geometric constraints on the shape of both the coil and the homogeneous volume; it guarantees a globally optimal solution, and it automatically searches the minimum number of coils that satisfies given constraints.

Optimization of Satellite Honeycomb Platforms (하니콤 위성 플래폼의 최적 설계)

  • Park, Jeong-Seon;Im, Jong-Bin;Kim, Jin-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • An optimization of satellite honeycomb platforms under sever space environment is performed. There are many optimization constraints for space environment to be considered. A modified method of feasible direction and a genetic algorithm are used to optimize the satellite platform structures. The design constraints are concerned with bearing stresses at joints and natural frequencies. The results from the optimization methods are compared. The numerical results show that natural frequency constraints are dominant to reach the optimum design. This study verifies the design of satellite honeycomb platforms and suggests an optimal platform design.

Design Sensitivity Analysis and Optimization of Finite Dimensional Structures by Adjoint Variable Method (의사변수법(擬似變數法)에 의한 유한차원(有限次元) 구조물(構造物)의 설계민감도(設計敏感度) 해석(解析) 및 최적화(最適化)에 관한 연구(硏究))

  • Suh, Kwan Se;Byun, Keun Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.137-144
    • /
    • 1985
  • This paper deals with the adjoint variable method in design sensitivity analysis that is essential to the structure optimization. The method is shown to be much simpler than the conventional method in structure optimization by applying it to the optimal design of finite dimensional structures. Design sensitivity analyses and their numerical solutions for the principal constraints, i.e., displacement and stress constraints under static loads are obtained. Furthermore, it is proved that optimization can be carried out efficiently by applying the optimization algorithm. Structure optimization problems of minimizing the volumes of the truss structures(finite dimensional structures) under the appropriate boundary conditions, loading conditions and constraints are considered.

  • PDF

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

A Study on the Theme Park Users' Choice behavior -Application of Constraints-Induced Conjoint Choice Model- (주제공원 이용자들의 선택행동 연구 -Constraints-Induced Conjoint Choice Model의 적용-)

  • 홍성권;이용훈
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.18-27
    • /
    • 2000
  • The importance of constraints has been one of major issues in recreation for prediction of choice behavior; however, traditional conjoint choice model did not consider the effects of these variables or fail to integrate them into choice model adequately. The purposes of this research are (a) to estimate the effects of constraints in theme park choice behavior by the constraints-induced conjoint choice model, and (b) to test additional explanatory power of the additional constraints in this suggested model against the more parsimonious traditional model. A leading polling agency was employed to select respondents. Both alternative generating and choice set generating fractional factorial design were conducted to meet the necessary and sufficient conditions for calibration of the constraints-induced conjoint choice model. Th alternative-specific model was calibrated. The log-likelihood ratio test revealed that suggested model was accepted in the favor of the traditional model, and the goodness-of-fit($\rho$$^2$) of suggested and traditional model was 0.48427 and 0.47950, respectively. There was no difference between traditional and suggested model in estimates of attribute levels of car and shuttle bus because alternatives were created to estimate the effects of constraints independently from mode related variables. Most parameters values of constraints had the expected sign and magnitude: the results reflected the characteristics of the theme parks, such as abundance of natural attractions and poor accessibility in Everland, location of major fun rides indoor in Lotte World, city park like characteristics of Dream Land, and traffic jams in Seoul. Instead of the multinomial logit model, the nested logit model is recommended for future researches because this model more reasonably reflects the real decision-making process in park choice. Development of new methodology too integrate this hierarchical decision-making into choice model is anticipated.

  • PDF

The Cholesky rank-one update/downdate algorithm for static reanalysis with modifications of support constraints

  • Liu, Haifeng;Zhu, Jihua;Li, Mingming
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.297-302
    • /
    • 2017
  • Structural reanalysis is frequently utilized to reduce the computational cost so that the process of design or optimization can be accelerated. The supports can be regarded as the design variables and may be modified in various types of structural optimization problems. The location, number, and type of supports can make a great impact on the performance of the structure. This paper presents a unified method for structural static reanalysis with imposition or relaxation of some support constraints. The information from the initial analysis has been fully utilized and the computational time can be significantly reduced. Numerical examples are used to validate the effectiveness of the proposed method.

A partitioning-based synthesis algorithm for the design of low power combinational circuits under area constraints (면적 제약조건하의 저전력 조합회로 설계를 위한 분할 기반 합성 알고리즘)

  • Choi, Ick-Sung;Kim, Hyoung;Hwang, Sun-Young
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.7
    • /
    • pp.46-58
    • /
    • 1998
  • In this paper, we propose a synthesis algorithm for the design of low powe rcombinational circuits under area constraints. The proposed algorithm partitions a given circuit into several subcircuits such that only a selected subcircuit is activated at a time, hence reduce unnecessary signal transitions. Partitioning of a given circuit is performed through adaptive simulated annealing algorithm employing the cost function reflecting poer consumption under area constraints. Experimental reuslts for the MCNC benchmark circuits show that the proposed algorithm generates the circuits which consume less power by 61.1% and 51.1%, when compared to those generated by the sis 1.2 and the precomputation algorithm, respectively.

  • PDF

Design of a High-Level Synthesis System Supporting Asynchronous Interfaces (비동기 인터페이스를 지원하는 정원 수준 합성 시스템의 설계)

  • 이형종;이종화;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.116-124
    • /
    • 1994
  • This paper describes the design of a high-level synthesis system. ISyn: Interface Synthesis System for ISPS-A. which generates hardware satisfying timing constraints. The original version of ISPS is extended to be used for the description/capture of interface operations and timing constraints in the ISPS-A. To generate the schedule satisfying interface constraints the scheduling process is divided into two steps:pre-scheduling and post-scheduling. ISyn allocates hardware modules with I/O ports by the clique partitioning algorithm. Experimental results show that ISyn is capable of synthesizing hardware modules effectively for internal and/or interactive operations.

  • PDF