• Title/Summary/Keyword: Design Variables

Search Result 7,228, Processing Time 0.038 seconds

Optimum Design of Reinforced Concrete Continuous Beams using DCOC (이산성 연속형 최적규준(DCOC)방법에 의한 RC연속보의 최적설계)

  • 조홍동;이상근;구봉근;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.440-446
    • /
    • 1996
  • In this study, a procedure for the economic design of reinforced concrete beams under several design constraints is outlined on the basis of discretized continuum-type optimality criteria (DCOC). The costs to be minimized involve those of concrete, reinforcing steel and formwork. The design constraints include limits on the maximum deflection in a given span, on bending and shear strengths, in addition to upper and lower bounds on design variables. An explicit mathematical derivation of optimality criteria is given based on the well known Kuhn-Tucker mecessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. Self-weight of the spans is also included in the equilibrium equation of the real system and in the optimatlity criteria.

  • PDF

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.

GNSS Signal Design Trade-off Between Data Bit Duration and Spreading Code Period for High Sensitivity in Signal Detection

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.87-94
    • /
    • 2017
  • GNSS modernization and development is in progress throughout the globe, and it is focused on the addition of a new navigation signal. Accordingly, for the next-generation GNSS signals that have been developed or are under development, various combinations that are different from the existing GNSS signal structures can be introduced. In this regard, to design an advanced signal, it is essential to clearly understand the effects of the signal structure and design variables. In the present study, the effects of the GNSS spreading code period and GNSS data bit duration (i.e., signal design variables) on the signal processing performance were analyzed when the data bit transition was considered, based on selected GNSS signal design scenarios. In addition, a method of utilizing the obtained result for the design of a new GNSS signal was investigated.

Smooth Boundary Topology Optimization Using B-spline and Hole Generation

  • Lee, Soo-Bum;Kwak, Byung-Man;Kim, Il-Yong
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.11-20
    • /
    • 2007
  • A topology optimization methodology, named "smooth boundary topology optimization," is proposed to overcome the shortcomings of cell-based methods. Material boundary is represented by B-spline curves and their control points are considered as design variables. The design is improved by either creating a hole or moving control points. To determine which is more beneficial, a selection criterion is defined. Once determined to create a hole, it is represented by a new B-spline and recognized as a new boundary. Because the proposed method deals with the control points of B-spline as design variables, their total number is much smaller than cell-based methods and it ensures smooth boundaries. Differences between our method and level set method are also discussed. It is shown that our method is a natural way of obtaining smooth boundary topology design effectively combining computer graphics technique and design sensitivity analysis.

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

A Study on Optimal Pole Design of Spoke type IPMSM with Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method (실험계획법을 이용한 집중권 권선형 Spoke type IPMSM의 형상최적설계에 대한 연구)

  • Hwang, K.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.46-49
    • /
    • 2009
  • An optimal design procedure is proposed to effectively reduce the torque ripple by optimizing the rotor pole shape of the spoke type IPMSM with concentrated winding. The procedure is composed of two steps. In step I, the steepest descent method (SDM) is used with only two design variables to rapidly approach the optimal shape. From the near optimal rotor shape as a result of the step I, the design variables are reselected and the drawing spline curves are utilized to explain more complex shape with the Kriging model in step II. By using an optimal design procedure, we show that the optimized rotor pole shape of the spoke type IPMSM effectively reduces the torque ripple while still maintaining the average torque.

  • PDF

Design Flood Estimation by Basin Characteristics (유역특성을 이용한 설계홍수량 추정)

  • Park, Ki-Bum;Kim, Gyo-Sik;Han, Ju-Heun;Bae, Sang-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1172-1175
    • /
    • 2006
  • Generally, the estimation of design flood uses basin rainfall data, water level data, and runoff data, and so forms rainfall-runoff model. Because owing to the lack of hydrological data, the decision of representative unit hydrograph about the basin is difficult, the estimation of design flood uses topography feature data, and so presumes variables, and then applies the presumed variables to the model. In estimating design flood by using the model, it is considerably difficult to analyze how the model input variables estimated by topography factors, or the design flood data estimated previously are related to basin feature factors as the basic data, and presume design flood in the unmeasured basins or the basins where river arrangement basic plan is not established. The purpose of this study is to analyze how the design flood estimated previously by river arrangement basic plan is correlated with topography factors in presuming design flood, and so examine the presumption measures of design flood by using topography feature data and probability rainfall data.

  • PDF