• Title/Summary/Keyword: Design Stage

Search Result 6,690, Processing Time 0.036 seconds

A Comparative Study on Light and Space in the Stage Designs of Tristan und Isolde - Focusing on the Experiments and design projects by Max Keller - (트리스탄과 이졸데의 무대디자인에 적용된 빛과 공간의 비교분석 - 막스 켈러의 실험과 디자인 프로젝트를 중심으로 -)

  • Kim, Jong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2009
  • The relationship between light and space is fundamental In an opera stage design. In contemporary stage design, light, color and space themselves became one of tile most important elements to express and symbolize the content of the opera. This was very different compared to the primitive and medieval opera stage design in the past. The designer tried to represent the same periodical background of the opera with exact replica of the buildings as well as costumes. In comtemporary performance art, light became one the most important aspects in design. Max Keller is one of the living pioneers in stage lighting design. This thesis that is based on his lighting experiments and projects attempts to examine how contemporary stage design and light are applied and what kind of characteristics they have. One of the Wagner's opera, "Tristan und Isolde" was selected to be further analyzed. Three different "Tristan und Isolde" opera stage designs were carefully studied in terms of how three designs are differently constructed for specific same contents of the opera. This sort of comparison study is crucial when there is a strict parameter that is the opera itself. It was found that three opera stages have very different stage designs and unique ways of expressing the opera flow and contents. However, in some parts, very similar lightings were used. This sort of multi-disciplinary study can be helpful to re-think the interior environment by applying light as a fundamental medium.

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Dynamic Analysis of a Nano Imprinting Stage Using CAE (CAE를 이용한 나노 임프린트 스테이지의 동적 거동해석)

  • Lee, Kang-Wook;Lee, Min-Gyu;Lee, Jae-Woo;Lim, Si-Hyung;Shin, Dong-Hoon;Jang, Si-Youl;Jeong, Jae-Il;Yim, Hong-Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.211-217
    • /
    • 2007
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body kinematics and dynamics has been presented. We have developed a virtual imprinting machine to evaluate the prototype design in the early design stage. The simulation using CAE for the imprinting machine is not only to analyze static and dynamic characteristics of the machine but also to determine design parameters of the components for the imprinting machine, such as dimensions and specifications of actuators and sensors. Structural components as the upper plate, the rotator, the shaft and the translator have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism. In addition, we made the 4-axis stage model to compare the dynamic behavior with that of 3-axis stage model.

Off-Design Performance Prediction of Multi-Stage Axial-Compressor by Stage-Stacking Method (단 축적법을 이용한 다단 축류 압축기 탈설계 성능예측)

  • Park, Tae-Jin;Baek, Je-Hyun;Yoon, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.789-794
    • /
    • 2001
  • In this study, a program for the off-design performance prediction of multi-stage axial-compressors is developed based on stage-stacking method. To account for the increased losses at off-design conditions, generalized performance curve is applied. The purpose of this study is to investigate the influence of the choice of generalized performance curve and stator exit angle. For this purpose, we tested various generalized performance curves and stator exit angles. In conclusion, Muir's pressure coefficient curve gives a good prediction results regardless of the efficiency curve for a low-stage compressors. On the other hand, for high-stage compressors, The combination of Muir's pressure coefficient curve and Stone's efficiency curve gives a optimistic results. Stator exit angle has a small effect on overall performance curve.

  • PDF

Steam Turbine Stage Design Using Flow Analysis (유동 해석을 이용한 증기 터빈 Stage 설계)

  • Kwon, G.B.;Kim, Y,S.;Cho, S.H.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.309-314
    • /
    • 2001
  • The high efficient steam turbine stage has been analyzed with the help of the 3-dimensional analysis tool. To increase the efficiency of steam turbine stage, the nozzle has to be designed by using the 3-dimensional stacking method. And the bucket has to be designed to cope with the exit flow of nozzle. To verify the stage design, therefore, the numerical analysis of the steam turbine stage was conducted. In this design, CFX-TASCflow was employed to predict the steam flow of the steam turbine stage. The numerical analysis was performed in parallel calculation by using the HP N4000 8 CPUs machine. The result showed the numerical analysis could be used to help to design the steam turbine stage.

  • PDF

Development of a 3-axis fine positioning stage : Part 1. Design and Fabrication (초정밀 3축 이송 스테이지의 개발 : 1. 설계 및 제작)

  • Kang, Joong-Ok;Seo, Mun-Hoon;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.648-651
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stae are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

Ultra high precision Dual stage system Using Air bearing and VCM for Nano level Scanning (VCM을 이용한 나노 정밀도 스캐닝 용 초정밀 이중 스테이지)

  • Kim Ki-Hyun;Gweon Dae-Gab;Choi Young-Man;Kim Dong-Min;Nam Byoung-Uk;Lee Suk-Won;Lee Moon-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.103-112
    • /
    • 2005
  • This paper presents one-axis high precision scanning system and illustrates the design of modified $X-Y-{\theta}$ stage as a tracker using VCM and commercialized air bearings for it. The scanning system for 100nm resolution is composed of the 3-axis stage and one axis long stroke linear motor stage as a follower. In this study a previous proposed and presented structure of VCM for the fine stage is modified. The tracker has 3 DOF($X-Y-{\theta}$ motions by four VCM actuators which are located on the same plane. So 4 actuating forces are suggested and designed to create least pitch and roll motions. This article will show about the design especially about optimal design. The design focus of this fine stage is to have high acceleration to accomplish high throughput. The optimal design of maximizing acceleration is performed in restrained size. The most sensitive constraint of this optimal design is heat dissipation of coil. There are 5 design variables. Because the relationship between design variables and system parameters are quite complicated, it is very difficult to set design variables manually. Due to it, computer based optimal design procedure using MATLAB is used. Then, this paper also describes the procedures of selecting design variables for the optimal design and a mathematical formulation of the optimization problem. Based on the solution of the optimization problem, the final design of the stage is also presented. The results can be verified by MAXWELL. The designed stage has the acceleration of about 5 $m/s^{2}$ with 40kg total mass including wafer chuck and interferometer mirror. And the temperature of coil is increased $50^{\circ}C$. In addition, the tracker is controlled by high precision controller system with HP interferometer for it and linear scaler for the follower. At that time, the scanning system has high precision resolution about 5nm and scanning resolution about 40nm in 25mm/s constant speed

A Study on Design of Micro Stage using Design of Experiment (실험계획법을 이용한 마이크로 스테이지 설계에 관한 연구)

  • Ye S.D.;Jeong J.H.;Lee J.K.;Min B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1394-1397
    • /
    • 2005
  • The object of this study was to design of micro stage, which is one of the equipments embodied in ultra precision positioning mechanism. Design factors for micro stage were decided a roundness of hinge, a thickness of hinge, a thickness of stage, a length of arms and a clearance of division. To obtain the $1^{st}$ natural frequency and equivalent stresses, FEM simulation was performed using the table of orthogonal arrays and Taguchi method was used to determine the optimal design parameters. As results of this study, the size of 1st natural frequency and equivalent stresses on micro stage was influenced significantly by a thickness of hinge and a length of arm.

  • PDF

초정밀 스테이지 설계 및 제작

  • 강중옥;한창수;홍성욱
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.177-181
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stage are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

Development of an Hull Structural CAD System based on the Data Structure and Modeling Function for the Initial Design Stage (초기 설계를 위한 자료 구조 및 모델링 함수 기반의 선체 구조 CAD 시스템 개발)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.362-374
    • /
    • 2006
  • Currently, all design information of a hull structure is being first defined on 2D drawings not 3D CAD model at the initial ship design stage and then transferred to following design stages through the 2D drawings. This is caused by the past design practice, limitation on time, and lack of hull structural CAD systems supporting the initial design stage. As a result, the following design tasks such as the process planning and scheduling are being manually performed using the 2D drawings. For solving this problem, a data structure supporting the initial design stage is proposed and a prototype system is developed based on the data structure. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of the hull structure at the initial design stage.