• Title/Summary/Keyword: Design Height

Search Result 3,148, Processing Time 0.036 seconds

Design of Height Adjustment Mechanism for Flat Panel Display by DFSS (DFSS에 의한 FPD용 높이 조절기구 설계)

  • Cho, Gyu-Yeol;Cheong, Seon-Hwan;Choi, Seong-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • This study was carried out to minimize the lifting force and to design the slim sized frame of a height adjustment mechanism. This unit is designed for the display devices in order to enhance the ergonomics for effective height adjustment as well as to achieve much slimmer frame for the pedestal. A tolerance analysis of 6 sigma was applied to achieve smooth lift at design stage not to change the tolerance specification of gap several times in a roller type of lifting mechanism at mass production stage. The specification of minimum gap and the target of production yield ratio were agreed with a quality team before tooling. A DFSS simulation on drawings had been done with reasonable tolerance and achievable standard deviation(${\sigma}$) several times until the target specification of gap and yield ratio was met. Once tolerance and deviation(${\sigma}$) were fixed tooling start was done successfully. A CAE method was applied to achieve a slim design. Design parameters were frozen when those parameters matched the reference strength data of standard model. Through those tolerance analysis and CAE simulation the number of tool modification was reduced and production yield ratio was raised up without arguing quality specification at production stage in the end.

Determination of Shoulder Height for Ball Bearing using Contact Analysis (접촉해석을 이용한 볼 베어링의 Shoulder Height 결정)

  • Kim Tae-Wan;Cho Yong-Joo;Yoon Ki-Chan;Park Chang-Nam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.377-383
    • /
    • 2003
  • In this study, the methodology for determination of shoulder height in the internal shape design of ball bearing using 3D contact analysis is proposed. The quasi-static analysis of a ball bearing was performed to calculate the distribution of applied contact load and angles among the rolling elements. From each rolling element loads and the contact geometry between ball and inner/outer raceway, 3D contact analyses using influence function are conducted. These methodology is applied to HDD ball bearing. The critical axial load and the critical shoulder height which are not affected by edge in the present shoulder height is calculated. The proposed methodology may be applied to other rolling element bearing for the purpose of reducing the material cost and improving the efficiency of the bearing design process.

  • PDF

An Analysis of the Body Measurement for Children′s Clothing Design (아동복 설계를 위한 신체계측분석 연구)

  • 윤정혜;조윤주;박정순
    • The Research Journal of the Costume Culture
    • /
    • v.3 no.2
    • /
    • pp.293-306
    • /
    • 1995
  • The purpose of this study is to analysis children's measurement and to provide the fundamental information for he clothing design which can reflect the characteristic of their bodies. An anthropometric database used for this study was the 1992 national anthropomatric survey of Koreans. The results obtained are as follows; (1) Children showed the significant difference of their growth in accordance with the increase of their ages. There were also the difference between body and girls. Height, length of items grew most promthy. For example; boys from 10 to 11 and girls from 10 to 11 again their height mostly. (2) In character of body proportion, significant difference were found in accordance with their ages and sex. However, in the items of height, length noticeable changes of proportion could not be found because there were hardly any actual difference of size means while girth items appeared differently. (3) There were significant factors from the result of factor analysis of body dimension. The fist factor ; grith, depth, breath. The second factor ; height, length. (4) We can class three groups with the results of cluster analysis of body dimension.

  • PDF

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Development of HVAC System to Lower the Conveyance Energy and Building Height (반송동력과 건물층고 저감형 공조시스템 개발)

  • 김정엽;신현준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • The new HVAC system to lower the conveyance energy and building height using IAV (Increasing Air Volume) technique is developed. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy, size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 per-centage.

Comparing floor height reduction effect of slim floor system with square steel pipe (각형강관을 이용한 슬림플로어 시스템의 층고절감효과 비교)

  • Cho, Youn-Jin;Rhim, Hong-Chul;Kim, Dae-You;Lyu, Seung-Il;Kim, Do-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.56-57
    • /
    • 2017
  • In recent years, new construction methods have been required to reduce the construction cost and increase the available area in an environment where construction work is frequently performed in a narrow urban area like Korea. As a result of these studies, slim floor composite beam has been suggested. Slim floor composite beam can reduce required depth because web of steel beam is embedded in the slab, so it is effective to reduce floor height and increase the available area. The purpose of this study is the floor height reduction evaluation by comparing system consisting of reinforced concrete, steel, and slim floor using square-shape steel pipe. After doing structural design for a typical plan, checked effectiveness by comparing each design plan. It is proven that slim floor composite beam can reduce required depth effectively comparing required materials of other system.

  • PDF

Development of HVAC System to Lower the Conveyance Energy and Building Height

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.31-43
    • /
    • 2005
  • The new HVAC system is developed to lower the conveyance energy and building height using IAV(Increasing Air Volume) technique. IAV units which are equipped in each zone carry out air-conditioning and supply fresh air by induction of outdoor air in main duct. The design program which decides size of OAHU and IAV unit according to air conditioning load and fresh air demand of each zone is presented. The control system is developed to operate efficiently HVAC system and IAV unit, so that individual zone operation and well-deal with partial load and IAQ problem are possible. The new system is investigated in model building and makes more profit in conveyance energy. size of air conditioning facilities room and building height than VAV system. But in construction cost it is worse by about 15 percentage.

Shape optimization of angled ribs to enhance cooling efficiency (냉각효율 향상을 위한 경사진 리브의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.627-630
    • /
    • 2003
  • This work presents a numerical procedure to optimize the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. SST turbulence model is used as a turbulence closure. The width-to-height ratio of the rib, rib height-to-channel height ratio, pitch-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. D-optimal experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained for the weighting factors in the range from 0.0 to 1.0.

  • PDF

Analysis of Design Parameters For Shunt Valve and Anti-Siphon Device Used to Treat Patients with Hydrocephalus

  • Lee, Chong-Sun;Jang, Jong-Yun;Suh, Chang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1061-1071
    • /
    • 2001
  • The present study investigated design parameters of shunt valves and anti-siphon device used to treat patients with hydrocephalus. The shunt valve controls drainage of cerebrospinal fluid (CSF) through passive deflection of a thin and small diaphragm. The anti-siphon device(ASD) is optionally connected to the valve to prevent overdrainage when the patients are in the standing position. The major design parameters influencing pressure-flow characteristics of the shunt valve were analyzed using ANSYS structural program. Experiments were performed on the commercially available valves and showed good agreements with the computer simulation. The results of the study indicated that predeflection of the shunt valve diaphragm is an important design parameter to determine the opening pressure of the valve. The predeflection was found to depend on the diaphragm tip height and could be adjusted by the diaphragm thickness and its elastic modulus. The major design parameters of the ASD were found to be the clearance (gap height) between the thin diaphragm and the flow orifice. Besides the gap height, the opening pressure of the ASD could be adjusted by the diaphragm thickness, its elastic modulus, area ratio of the diaphragm to the flow orifice. Based on the numerical simulation which considered the increased subcutaneous pressure introduced by the tissue capsule pressure on the implanted shunt valve system, optimum design parameters were proposed for the ASD.

  • PDF

Clothing Design Preference of Women by Physical Type and Age: Study I - ln the area of line categories - (성인여성의 체형과 연령에 따른 의복디자인 선호연구( I ) - 선의 유형(類型)을 중심으로 -)

  • Chung Sham Ho;Kahng Hewon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.2 s.38
    • /
    • pp.103-113
    • /
    • 1991
  • The purpose of this study was to investigate the effect of physical type and age on preference for line in women's clothing design. Line preference in clothing design was concerned with varying in length, direction, division, and shape. All of the preference measures were devised specifically for this study. Furthermore, items on height and weight for physical type as well as age of the subjects were included in the questionnaire. Data were obtained by means of structured interviews and self-administered questionnaires from 588 women ($20\~60$ years of age) in Seoul. Analysis was by One·way ANOVA, Chi-square ($X^{2}$), and Scheffe test. It was found that 4 categories of line preference were affected by both body type and height. An age effect was found on 3 categories of design lines; however, preference for 2 categories of design lines in clothing styles were unaffected by either physical type or age. It was concluded that body type, height, and age are powerful predictive variables for line preference in clothing design. Generally, there was some similarities in preference for lines among slim body types, tall figures, and younger age group as well as heavy body types, short figures, and older age group.

  • PDF