• Title/Summary/Keyword: Design Element and Method

Search Result 5,253, Processing Time 0.029 seconds

Automatic Quadrilateral Element Mesh Generation Using Boundary Normal Offsetting In Various Two Dimensional Objects (다양한 2차원 형상에서의 외부 경계 절점 오프셋 방법을 이용한 자동 사각 요소 및 요소망 생성)

  • 김도헌;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.270-277
    • /
    • 2003
  • In two dimensional mechanical design analysis, quadrilateral element mesh is preferred because it provides more accurate result than triangular element mesh. However, automation of quadrilateral element mesh generation is much more complex because of its geometrical complexities. In this study, an automatic quadrilateral element mesh generation algorithm based on the boundary normal offsetting method and the boundary decomposition method is developed. In so doing, nodes are automatically placed using the boundary normal offsetting method and the decomposition method is applied to decompose the designed domain into a set of convex subdomains. The generated elements are improved by relocation of the existing nodes based on the four criteria - uniformity, aspect ratio, skewness and taper degree. The developed algorithm requires minimal user inputs such as boundary data and the distance between nodes.

Numerical characterizations of a piezoelectric micromotor using topology optimization design

  • Olyaie, M. Sadeghbeigi;Razfar, M.R.
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • This paper presents the optimum load-speed diagram evaluation for a linear micromotor, including multitude cantilever piezoelectric bimorphs, briefly. Each microbeam in the mechanism can be actuated in both axial and flexural modes simultaneously. For this design, we consider quasi-static and linear conditions, and a relatively new numerical method called the smoothed finite element method (S-FEM) is introduced here. For this purpose, after finding an optimum volume fraction for piezoelectric layers through a standard numerical method such as quadratic finite element method, the relevant load-speed curves of the optimized micromotor are examined and compared by deterministic topology optimization (DTO) design. In this regard, to avoid the overly stiff behavior in FEM modeling, a numerical method known as the cell-based smoothed finite element method (CS-FEM, as a branch of S-FEM) is applied for our DTO problem. The topology optimization procedure to find the optimal design is implemented using a solid isotropic material with a penalization (SIMP) approximation and a method of moving asymptotes (MMA) optimizer. Because of the higher efficiency and accuracy of S-FEMs with respect to standard FEMs, the main micromotor characteristics of our final DTO design using a softer CS-FEM are substantially improved.

A Study on Optimization of Crankshaft in Diesel Engine (디이젤 엔진의 크랭크축 최적설계에 관한 연구)

  • Cho, S.B.;Ahn, S.H.;Yoo, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.10-16
    • /
    • 1995
  • In this study, the optimum design is carried out upon the crankshaft of in-line 6-cylinder internal combustion diesel engine with the mechanical analysis for the layout design, which is standard calculation whose process contains quadratic curve fitting method and quasi newton method about cost function, design variables and constraint conditions, Without finite element analysis, this process in wich mechanical analysis is performed upon the most critical part in crankshaft gives necessary and satisfied output in layout design and saves time and cost in developing a new diesel engine. In this study, also, the 3-dimensional finite element method is used in confirming the standard calculation for the optimization of crankshaft and the shape optimization in crankweb is obtained.

  • PDF

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

DESIGN PROBLEM SOLVED BY OPTIMAL CONTROL THEORY

  • Butt, Rizwan
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.167-178
    • /
    • 1997
  • In this paper we present an application to airfoil design of an optimum design method based on optimal control theory. The method used here transforms the design problem by way of a change of variable into an optimal control problem for a distributed system with Neumann boundary control. This results in a set of variational inequalities which is solved by adding a penalty term to the differential equation. This si inturn solved by a finite element method.

A Study on Design of Underwater Acoustic Transducers Using the Electro-mechanical Coupling Analysis Code ATILA (전기-기계 연성해석 코드 ATILA를 이용한 수중 음향 트랜스듀서 설계)

  • Lee, Jeong-min;Cho, Yo-han;Kim, Jung-suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1211-1216
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes. materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that it requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tail mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

Element Connectivity Based Topology Optimization for Linear Dynamic Compliance (요소 연결 매개법을 이용한 선형 구조물의 동적 컴플라이언스 최적화)

  • Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.259-265
    • /
    • 2009
  • This paper studies the Element Connectivity Parameterization Method(ECP method) for topology optimization considering dynamic compliance. The previous element density based topology optimization method interpolates Young's modulus with respect to design variables defined in each element for topology optimization. Despite its various applications, these element density based methods suffer from numerical instabilities for nonlinear structure and multiphysics systems. To resolve these instabilities, recently a new numerical method called the Element Connectivity Parameterization(ECP) Method was proposed. Unlike the existing design methods, the ECP method optimizes the connectivities among plane or solid elements and it shows some advantages in topology optimization for both nonlinear structure and multiphysics systems. In this study, the method was expanded for topology optimization for the dynamic compliance by developing a way to model the mass matrix in the framework of the ECP method.

Design of RC Plates and Shells subjected to Membrance Force and Flexural Moment (철근콘크리트 판형과 쉘의 휨과 막력을 고려한 설계)

  • 조홍진;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.217-222
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrance and flexural forces. Based on equilibrium consideration, equation for capacity of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, I. e., for each integration point, from the equilibrium between applied and internal forces. Three cases of design are performed for slab element (used by Marti(1987)) and shell element (used by Kirscher and Collins(1986), by Polak and Vecchio(1993)) to verify the adequacy of the present design method for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load. This shows the adequacy of the design method present in this study at least for slab and shell element case studied. To generalize the conclusion more design-analyses should be performed with different shell configurations.

  • PDF

Process Design in Precision Coining by Three-Dimensional Finite Element Method (정밀 코닝 공정 설계에서의 3차원 유한요소법 활용)

  • 최한호;강범수;변천덕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.173-181
    • /
    • 1994
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study, a program using the rigid plastic finite element has been developed for preform design in three-dimensional plastic deformation. The surface integration for calculation of the friction between die and workpiece has been implemented with care in numerical treatment. The developed program is applied to a precision coining process for designing an optimal punch.

  • PDF