• 제목/요약/키워드: Design Element and Method

검색결과 5,253건 처리시간 0.031초

호텔 로비공간에서의 전통성 표현에 관한 연구-국내.외 특급호텔 사례분석을 중심으로- (A Study on the Traditional Expressions in Hotel Lobby Space Interior Design-Focused on Special Grade Hotels-)

  • 홍진영;최상헌
    • 한국실내디자인학회논문집
    • /
    • 제22호
    • /
    • pp.85-91
    • /
    • 2000
  • The purpose of this study is to grasp the element and method of traditional expression appeared in hotel lobby spaces, and present the direction of traditional expression applicable to the domestic hotel lobby space. Therefore, this study analyzed traditional expression according to its element and method taken out from the prior researches related to it. Specifically, the element of traditional expressions divided into the element of space organization, the element of structure (bottom, wall, ceiling, window, door and pillar), and the element of decorative design(furniture, illumination, artistic ornament, color, and material). The method of traditional expressions divided into the method of prototype reappearance, prototype transformation, reinterpretation, and abstract. The target of analysis has been 27 hotels designed since 1970s. and described as expressed traditionality in architecture-technical journals and books in the inside and outside of the country. considering these results, it seems that the traditional expressions using more various elements and more various element and methods have to used in domestic hotels. Specifically, when expressing traditionality in the lobby space of domestic hotel, it is important to decided the method expressing traditionality at first, and the traditional expressions using the element of space organization, structure, decorative design, and so based on the method expression traditionality was fulfilled with coordination.

  • PDF

준해석 설계민감도를 위한 변위하중법 (Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis)

  • 유정훈;김흥석;이태희
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

구름 베어링 설계를 위한 유전 알고리듬 기반 조합형 최적설계 방법 (Genetic-Based Combinatorial Optimization Method for Design of Rolling Element Bearing)

  • 윤기찬;최동훈;박창남
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.166-171
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design for the application-based exclusive rolling element bearings, this study propose design methodologies by using a genetic-based combinatorial optimization. By the presence of discrete variables such as the number of rolling element (standard component) and by the engineering point of views, the design problem of the rolling element bearing can be characterized by the combinatorial optimization problem as a fully discrete optimization. A genetic algorithm is used to efficiently find a set of the optimum discrete design values from the pre-defined variable sets. To effectively deal with the design constraints and the multi-objective problem, a ranking penalty method is suggested for constructing a fitness function in the genetic-based combinatorial optimization. To evaluate the proposed design method, a robust performance analyzer of ball bearing based on quasi-static analysis is developed and the computer program is applied to some design problems, 1) maximize fatigue life, 2) maximize stiffness, 3) maximize fatigue life and stiffness, of a angular contact ball bearing. Optimum design results are demonstrate the effectiveness of the design method suggested in this study. It believed that the proposed methodologies can be effectively applied to other multi-objective discrete optimization problems.

  • PDF

유한요소법을 이용한 Tonpilz형 수중 음향 트랜스듀서 설계 (Tonpilz Type Underwater Acoustic Transducers Design using Finite Element Method)

  • 조요한;김정석;이정민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.247-250
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes, materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that It requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling Problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tall mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

  • PDF

상업공간에서의 자연요소 표현방법 및 특성에 관한 연구 (A Study on the Expression Method and Characteristics of Ecology Design in Commercial Space)

  • 이진영;서지은
    • 한국실내디자인학회논문집
    • /
    • 제22권2호
    • /
    • pp.186-193
    • /
    • 2013
  • In the commercial space, the modern consumers want to consume not only product but also culture. Thus, the modern commercial space tries to induce the customer's concern and purchase to the differentiated design. The introduction of this 'the natural element' delivers the pleasure and stability to the consumer buying process and availability is enlarged. Therefore, the purpose of study is gain that expression and characteristic method of the natural element in the commercial space. The detailed study method are as follows. First, the study looks into the natural element expression tendency in the modern space. Second, the expression type of the natural element was classified as 'Reappearance', 'Transformation', and 'Fuse' based on the preceding research. And according to the content of the expression type, subdivided method of 'Inclusion' and 'Replication' of 'Reappearance' and method of 'Imitation' and 'Association' of 'Transformation' and method of 'Juxtaposition' and 'Combine' of 'Fuse'. Third, the result of analyze the characteristic of expression of the natural element of the besides the commercial space case 20 place is as follows. First, 'Inclusion' of 'Reappearance' introduced the external scenery or planned garden as the inside through the opening. 'Replication' is used for decorative purposes or functional purposes as the natural element. 'Imitation' of 'Transformation' imitated the form, pattern, and color of the natural element and was mainly expressed in the wall and objet. The method of 'Association' expressed the concept of the natural element for the whole of the space and a portion of the wall and objet repetitively. As for 'Juxtaposition', mixture of 'Reappearance' had a good visual effect, because it can be obtained the external-internal nature. As for 'Combine', mixture of 'Replication' and 'Imitation' was the most common method. Thus, the study results are expected to be utilized as base date in designing the commercial with development of the natural element application method.

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

최적화를 이용한 단순 유화 요소 모델링 기법 개발 (A method for Simplified and Equivalent Finite Element Modeling Using Optimization Technique)

  • 이광원;석일우;박경진
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2001
  • As computer power is increased, refined finite element models are employed for structural analysis. However, it is difficult and expensive to use refined models in the design stage. The refined models especially cause problems in the preliminary design where the design is frequently changed. Therefore, simplified models are needed. The simplification process is regarded as an empirical technique. Simplified and equivalent finite element model of a structure has been studied and used in the preliminary design. A general approach to establish the simplified and equivalent model is presented. The generated simple model has satisfactory correlation with the corresponding refined finite element model. An optimization method, the Goal Programming algorithm is used to make the simple model. The simplified model is used for the design change and the changed design is recovered onto the original design. The presented method was verified with three examples.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

준해석적 비선형 설계민감도를 위한 개선된 변위하중법 (Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

자연요소법과 유전자 알고리듬을 사용한 원공 평판의 최적설계 (Optimization of a Membrane with a Center Hole using Natural Element Method and Genetic Algorithm)

  • 이상범;성활경;천호정
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.105-114
    • /
    • 2008
  • Natural element method (NEM) is quick in research activities by natural sciences and mechanical engineering fields, and from which good results are watched by various engineering fields and applied too. However no paper or research about the applied case has announced yet. Therefore on this paper, I will rediscover an optimum design and apply NEM into other fields with NEM for existing optimum design of mainly using FEM. NEM and genetic algorithm (GA) are applied to optimize a membrane with a center hole. The optimal design obtained by NEM is compared to the counterpart obtained by the finite element method (FEM). Result by NEM is found to be better than the result by FEM. NEM can be a feasible analysis tool in design optimization.