• Title/Summary/Keyword: Design Change Variables

Search Result 483, Processing Time 0.037 seconds

A Design Using Sensitivity Information (민감도 정보를 이용한 설계 방법)

  • Kim, Y.I.;Yi, J.W.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1248-1253
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm.

  • PDF

A Study on the Control of Apartment House Design Factors considering Energy, Environment and Economical Efficiency (에너지, 환경 및 경제성을 통합 고려한 공동주택 설계요소 제어에 관한 연구)

  • Choi, Doo-Sung;Do, Jin-Seok
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.29-38
    • /
    • 2012
  • The current building energy efficiency rating certification regulation on apartment houses evaluates only the saving rate of energy consumed during operation, i.e. use, of a building, but doesn't consider the energy consumptions and environmental load($CO_2$) emissions occurring during the whole lifetime of a building. So this study calculated the energy consumptions and environmental load emissions occurring during the whole lifetime of a building, selected reference schemes and alternative items by design variables to present a design draft considering energy efficiency and environmental performance, and evaluated the total cost by combining and calculating its direct cost(material and heating cost) and indirect cost(environmental cost), for an existing apartment house as an evaluation object. As a result of analysis, the change of heating cost by alternative items of design variables showed a 4~8% change rate compared to the reference scheme, and the material cost of design variable 7 showed a maximum 4.4 times change rate in the alternative plan 6 compared to the reference scheme. The environmental cost showed a similar change rate to the material cost change rate in general, but showed a similar environmental cost change rate to the heating cost change rate in case of design variables 4-1, 4-2, 7.

A Design Methodology and Software Development with Sensitivity Information (민감도 정보를 이용한 설계 방법 및 소프트웨어의 개발)

  • 김용일;이정욱;윤준용;박경진
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2092-2100
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. A software system with the flow has been developed. The system can be easily interfaced with existing commercial systems through a file wrapping technique. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm and the software system.

Optimization of front Bump Steer for Improving Vehicle Handling Performances (차량의 조종 안정성 향상을 위한 전륜 범프 스터어 최적화)

  • 서권희;이윤기;박래석;박상서;윤희석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.

  • PDF

A Method of Object Identification from Procedural Programs (절차적 프로그램으로부터의 객체 추출 방법론)

  • Jin, Yun-Suk;Ma, Pyeong-Su;Sin, Gyu-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2693-2706
    • /
    • 1999
  • Reengineering to object-oriented system is needed to maintain the system and satisfy requirements of structure change. Target systems which should be reengineered to object-oriented system are difficult to change because these systems have no design document or their design document is inconsistent of source code. Using design document to identifying objects for these systems is improper. There are several researches which identify objects through procedural source code analysis. In this paper, we propose automatic object identification method based on clustering of VTFG(Variable-Type-Function Graph) which represents relations among variables, types, and functions. VTFG includes relations among variables, types, and functions that may be basis of objects, and weights of these relations. By clustering related variables, types, and functions using their weights, our method overcomes limit of existing researches which identify too big objects or objects excluding many functions. The method proposed in this paper minimizes user's interaction through automatic object identification and make it easy to reenginner procedural system to object-oriented system.

  • PDF

Quantitative Evaluation of Driver's Postural Change and Lumbar Support Using Dynamic Body Pressure Distribution (동적 체압 분포를 이용한 운전 자세 변화와 요추지지대의 정량적 평가)

  • Na, Seok-Hui;Im, Seong-Hyeon;Jeong, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.57-73
    • /
    • 2003
  • Although body pressure distribution is sensitive to movements and is relatively simple to measure even in small space, there are few researches involving applications to driver's posture and its change. The main objective in this study is the application of body pressure distribution measurements for the prediction of the driver's posture and its change. This requires quantitative analyses of the dynamic body pressure distribution, which is the change of body pressure distribution with time. The experiment involved 16 male subjects who drove for 45 minutes in a seating buck. Measurement time, stature group, and lumbar support prominence were selected as independent variables, with subjective ratings of driver's discomfort, body posture data of hip, torso. knee angle, and body pressure data variables as dependent variables. The body pressure change variables and subjective ratings were found to increase as the measurement time increased and body pressure ratio variables reflected the torso angle. From the results and analysis of the body posture data and subjective rating results, it was predicted that the seats and the design of the lumbar supports used in the experiment was not fit for tall subjects, which could also be confirmed through the body pressure distribution data.

Robust Structural Optimization Considering the Tolerances of Design Variables (설계변수의 공차를 고려한 구조물의 강건 최적설계)

  • Lee, Gwon-Hui;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.112-123
    • /
    • 1997
  • The optimization techniques have been applied to versatile engineering problems for reducing manufacturing cost and for automatic design. The deterministic approaches or op5imization neglect the effects on uncertainties of design variables. The uncertainties include variation or perturbation such as tolerance band. The optimum may be useless when the constraints considering worst cases of design variables can not be satisfied, which results from constraint variation. The variation of design variables can also give rise to drastic change of performances. The two issues are related to constraint feasibility and insensitive performance. Robust design suggested in the present study is developed to gain an optimum insensitive to variation on design variables within feasible region. The multiobjective function is composed to the mean and the standard deviation of original objective function, while the constraints are supplemented by adding penalty term to original constraints. This method has a advantage that the second derivatives of the constraints are not required. A mathematical problem and several standard problems for structural optimization are solved to check out the usefulness of the suggested method.

The study on the thickness change in burring with stainless 409L (스테인리스 409L 버링가공 시 두께변화에 대한 연구)

  • Kim, H.J.;Ryu, H.Y.;Kim, H.J.;Kim, D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.06a
    • /
    • pp.107-108
    • /
    • 2009
  • This study is focused on the thickness change in burring with stainless 409L according to the change of main design variables and forming conditions, to manufacture the automobile exhaust flange. Large plastic deformations by burring process decreases thickness of inner radius and occurs cracks. The optimal design of performs by the finite element analysis achieves adequate improvement of thickness decrease.

  • PDF

The Analysis of LNG Storage Tank Steel Roof Behavior by the Change of Design Variables (설계 변수 변화에 따른 LNG 저장탱크 Steel Roof 거동 분석)

  • Kim Y,K.;Kim J.H.;Oh B.T,;Yoon I.S.;Yang Y,M.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.33-37
    • /
    • 2005
  • This paper deals with parametric studies for the structural response of LNG Storage Tank steel roof behavior acoording to change in design condition. In the design of steel roof, it may be required to represent a stable behavior under many loading conditions and those of combinations. We fulfill the analysis the steel roof behavior during concret placing and additionally change the design variabls like H beam, pressure and steel roof plate thickness. On the basis of the obtained results from this studies a guideline for a more reasonable design of LNG storage tank steel roof is introduced.

  • PDF