• Title/Summary/Keyword: Dermal papilla cells

Search Result 77, Processing Time 0.027 seconds

Microalgae, Tetraselmis tetrathele has Alopecia Prevention and Scalp Improvement

  • Park, Si-Hyang;Lee, Kyong-Dong;Ahn, Ginnae;Park, Hye-Jin;Choi, Kap Seong;Chun, Jiyeon;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.528-533
    • /
    • 2021
  • The microalga, Tetrathelmis tetrathele, is used in the development of products for the aquaculture, food, and nutraceutical industries. In the present study, we investigated whether the T. tetrathele ethanolic extract (TTE), which has anti-inflammatory properties, can confer protection against alopecia and improve scalp health, influence the proliferation of human keratinocytes, HaCaT cells, and human hair follicle dermal papilla cells (HFDPC), or inhibit 5α-reductase activity. We found that TTE inhibited the production of the inflammatory mediator, nitric oxide (NO), and prostaglandin E2 (PGE2) without cytotoxicity in LPS-stimulated RAW 264.7 cells. In addition, TTE encouraged the proliferation of HaCaT cells and HFDPC. Our results showed that TTE had anti-inflammatory activities, proliferated HaCaT cells and HFDPC, and inhibited 5α-reductase activity. Therefore, we suggest that T. tetrathele could be a potent therapeutic agent for alopecia prevention and scalp improvement.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

The Experimental Studies of YangHyulEum Gami-Bang Extracts on the Hair Growth Effect (양혈음가미방(養血飮加味方) 추출물의 발모효과에 대한 실험적 연구)

  • Hong, Jee-Hee;Jung, Hyun-A
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.29 no.3
    • /
    • pp.74-94
    • /
    • 2016
  • Objectives : YangHyulEum Gami-Bang(YHEG) is a hair care extracts which is composed of fourteen plant extracts used in oriental medicine. The purpose of this study is to investigate the effect of YangHyulEum Gami-Bang(YHEG) on the alopecia and hair growth.Methods & Results : The herbal extracts from YangHyulEum Gami-Bang(YHEG) was tested using in vivo and in vitro test models. 1. The YHEG extracts showed effect on the DNA proliferation of the hair dermal papilla cells measured by [3H]thymidine incorporation. 2. YHEG showed promoting on the expression of growth factors such as IGF-1, KGF-1 and inhibiting on the expression of inhibitory hair growth factor such as TGF-β1, BMP-2 estimated by qPCR. 3. The YHEG extracts showed effect on the activation of β-catenin in the dermal papilla cells. 4. YHEG showed inhibitory effects of NO synthesis at 0.2% concentrations. 5. YHEG showed effects in the expression of IL-1β, TNF-α, IL-6, COX-2 and iNOS gene in the LPS stimulated RAW 264.7 cells. 6. The hair growth index of the YHEG extracts ranked at over 2 when compared to control group which was ranked at 0. 7. The hair follicle number, length and size of the experimental group were remarkably higher than the control group in the histological observation.Conclusions : These results suggest that YangHyulEum Gami-Bang(YHEG) has hair growth promoting activity and it can be used as a potent treatment agent for preventing hair loss and stimulating hair growth for treatment of alopecia.

Effect and mechanism of docosahexaenoic acid on the proliferation of dermal papilla cells (Docosahexaenoic acid의 모유두세포 증식 효능 및 기전)

  • Ko, Jiyeon;Oh, Il-Joong;Kang, Jung-Il;Choi, Youn Kyung;Yoon, Hoon-Seok;Yoo, Eun-Sook;Ko, Chang-Ik;Ahn, Yong-Seok
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.84-89
    • /
    • 2019
  • Docosahexaenoic acid (DHA), a principal of mackerel-derived fermented fish oil, increases the proliferation of dermal papilla cells (DPCs) via the upregulation of cell cycle-associated proteins such as cyclin D1 and cdc2 p34, and might promote hair-growth. However, the intracellular mechanisms that underlie the action of DHA in the proliferation of DPCs have not been investigated fully. In this study, we addressed the action mechanisms of DHA to trigger the activation of anagen in DPCs. DHA activated β-catenin signaling by the increased phosphorylation at serine 552 and serine 675 as well as the translocation and accumulation of activated β-catenin into the nucleus. In the other hand, DHA inhibited canonical TGF-β/Smad signaling by the decreased phosphorylation of Smad2/3. Taken together, the results indicate that DHA might stimulate anagen signaling via the activation of Wnt/β-catenin pathway, while the inactivation of canonical TGF-β signaling pathway in DPCs.

Extracts for the Hair Growth Stimulation using In vivo and In vitro Test Models (In vivo와 In vitro 평가모델을 利用한 韓藥抽出物의 毛髮成長 및 促進에 미치는 實驗的 硏究)

  • Chiang, Hsueh-Chuan;Lee, Soo-Hyeong;Kim, Nam-Kwen;Lim, Hong-Jin;Hwang, Chung-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.53-79
    • /
    • 2002
  • To screen the effective materials for hair loss treatment, several natural extracts were tested using in vivo and in vitro test models. Firstly, all test materials were applicated onto the back skin of C57BL/6 mouse and then hair growth promoting effect was measured using hair growth index. As a result, Prunus mume, black bean, Brassica campestris subsp. black sesame and Rubi Fructus showed potent hair growth promoting effect, ranking as 1.5-2.0 of hair growth index. However, there were no plant extracts, which have remarkable potential of growth promotion of human hair dermal papilla cells cultured in vitro. In the experiments of 5${\alpha}$-reductase type Ⅱ inhibition assay, Prunus mume, Eriobotryae Folium showed effective potential to inhibit the activity of 5${\alpha}$-reductase type Ⅱ. To investigate the possible involvement of the effect of several plant extracts on the gene expression of growth factors in human hair dermal papilla cells, RT - PCR analyses were performed. However, there were no plant extracts, which have profound effect on the gene expression of several growth factors such as IGF-I, KGF, HGF and VEGF in the dermal papilla cells. Another tests for inhibition of microbial such as P. acne were also carried out to find whether these plant extracts have anti -microbial activities. Rubi Fructus showed anti -microbial effects on Propionibacterium acnes, which is believed as a pathogen of acne. Together, these results showed several plant extracts can be used for hair growth promotion.

  • PDF

Studies on the effects of medicinal plant extracts on the hair growth stimulation (數種의 韓藥材가 毛髮成長에 미치는 影響)

  • Choi, Woong;Choi, Jung-Hwa;Kim, Jong-Han
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.80-103
    • /
    • 2002
  • To screen the effective materials for hair loss treatment, several natural extracts were tested using in vivo and in vitro test models. Firstly, all test materials were applicated onto the back skin of C57BL/6 mouse and then hair growth pormoting effect were measured using hair growth index As a result, Polygonum muitifiorum Thunb and Terrninalia chebula Retz. showed potent hair growth promoting effect, ranking as 1.5-2.0 of hair growth index. However, there were no plant extracts, which have remarkable potential of growth promotion of human hair dermal papilla cells cultured in vitro. In the experiments of 5${\alpha}$-reductase type Ⅱ inhibition assay, Morus alba L., Chaenomelis Fructus, Saussureae Radix, Angelicae Gigantis Radix, Polygonum multifiorum Thunb, and Angelica dahurica (Fischer) Bentham et Hooker f. showed effective potential to inhibit the activity of 5${\alpha}$-reductase type Ⅱ. To investigate the possible involvement of effects of several plant extracts on the gene expression of growth factors in human hair dermal papilla cells, RT-PCR analyses were performed. As a consequences, Mentha haplocalyx Briq., Cimicifuga foetida L., Eclipta prostrata (L.) L., Pinus densiflora S. et. Z, and Polygonum muitifiorum Thunb revealed the regulatory roles on the expression of growth factors such as IGF-I, KGF, HGF and VEGF in the dermal papilla cells. Another test for inhibition of microbial such as P. acne and P. ovale were also carried out to find whether these plant extracts have anti-microbial activities. Morus alba L. and Chaenomelis Fructus showed anti-microbial effects on Propionibacterium acnes, which is believed as a pathogen of acne. Together, these results showed several plant extracts can be used for hair growth promotion.

  • PDF

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Comparative secretome analysis of human follicular dermal papilla cells and fibroblasts using shotgun proteomics

  • Won, Chong-Hyun;Kwon, Oh-Sang;Kang, Yong-Jung;Yoo, Hyeon-Gyeong;Lee, Dong-Hun;Chung, Jin-Ho;Kim, Kyu-Han;Park, Won-Seok;Park, Nok-Hyun;Cho, Kun;Kwon, Sang-Oh;Choi, Jong-Soon;Eun, Hee-Chul
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The dermal papilla cells (DPCs) of hair follicles are known to secrete paracrine factors for follicular cells. Shotgun proteomic analysis was performed to compare the expression profiles of the secretomes of human DPCs and dermal fibroblasts (DFs). In this study, the proteins secreted by DPCs and matched DFs were analyzed by 1DE/LTQ FTICR MS/MS, semi-quantitatively determined using emPAI mole percent values and then characterized using protein interaction network analysis. Among the 1,271 and 1,188 proteins identified in DFs and DPCs, respectively, 1,529 were further analyzed using the Ingenuity Pathway Analysis tool. We identified 28 DPC-specific extracellular matrix proteins including transporters (ECM1, A2M), enzymes (LOX, PON2), and peptidases (C3, C1R). The biochemically-validated DPC-specific proteins included thrombospondin 1 (THBS1), an insulin-like growth factor binding protein3 (IGFBP3), and, of particular interest, an integrin beta1 subunit (ITGB1) as a key network core protein. Using the shotgun proteomic technique and network analysis, we selected ITGB1, IGFBP3, and THBS1 as being possible hair-growth modulating protein biomarkers.

Oral Administration of Lactilactobacillus curvatus LB-P9 Promotes Hair Regeneration in Mice

  • Mikyung Song;Jaeseok Shim;Kyoungsub Song
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.204-215
    • /
    • 2024
  • This study was designed to examine the effect of Lactilactobacillus curvatus LB-P9 on hair regeneration. The treatment of LB-P9 conditioned medium increased the proliferation of both hair follicle dermal papilla cells and hair germinal matrix cells (hGMCs). Moreover, the expression levels of hair growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 7 were significantly elevated in hGMCs co-cultured with LB-P9. After time-synchronized depilation, mice were orally administered with either 4×107 colony forming unit (CFU) of LB-P9 (low dose) or 4×108 CFU of LB-P9 (high dose), once daily for 4 weeks. Compared with the vehicle (phosphate-buffered saline)-administrated group, the LB-P9-treated groups exhibited accelerated hair regrowth rate and enhanced hair thickness in a dose-dependent manner. Supporting this observation, both hair follicle numbers and the dermal thickness in skin tissues of the LB-P9-treated groups were increased, compared to those of the vehicle-treated group. These results might be explained by the increased level of β-catenin and number of hair follicle stem cells (CD34+ CD49f+ cells) in the skin tissues of mice administered with LB-P9, compared to the vehicle-treated mice. Also, increased serum levels of hair growth factors such as VEGF and insulin-like growth factor-1, and superoxide dismutase were found in the LB-P9-treated groups, compared to those of the vehicle-treated group. Taken together, these results might demonstrate that the oral administration of LB-P9 promotes hair regeneration by the enhancement of dermal papilla proliferation through the stimulation of hair growth factor production.