Browse > Article
http://dx.doi.org/10.48022/mbl.2104.04007

Microalgae, Tetraselmis tetrathele has Alopecia Prevention and Scalp Improvement  

Park, Si-Hyang (Sunmarine Biotech Co. Ltd)
Lee, Kyong-Dong (Department of Oriental Medicine Materials, Dongsin University)
Ahn, Ginnae (Department of Marine Bio-Food Science, Chonnam Natioal University)
Park, Hye-Jin (Department of Food Science and Nutrition, Changshin University)
Choi, Kap Seong (Department of Food Science and Biotechnology, College of Life Science and Natural Resources, Sunchon National University)
Chun, Jiyeon (Department of Food Science and Biotechnology, College of Life Science and Natural Resources, Sunchon National University)
Shim, Sun-Yup (Department of Food Science and Biotechnology, College of Life Science and Natural Resources, Sunchon National University)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.4, 2021 , pp. 528-533 More about this Journal
Abstract
The microalga, Tetrathelmis tetrathele, is used in the development of products for the aquaculture, food, and nutraceutical industries. In the present study, we investigated whether the T. tetrathele ethanolic extract (TTE), which has anti-inflammatory properties, can confer protection against alopecia and improve scalp health, influence the proliferation of human keratinocytes, HaCaT cells, and human hair follicle dermal papilla cells (HFDPC), or inhibit 5α-reductase activity. We found that TTE inhibited the production of the inflammatory mediator, nitric oxide (NO), and prostaglandin E2 (PGE2) without cytotoxicity in LPS-stimulated RAW 264.7 cells. In addition, TTE encouraged the proliferation of HaCaT cells and HFDPC. Our results showed that TTE had anti-inflammatory activities, proliferated HaCaT cells and HFDPC, and inhibited 5α-reductase activity. Therefore, we suggest that T. tetrathele could be a potent therapeutic agent for alopecia prevention and scalp improvement.
Keywords
Tetraselmis tetrathele; nitric oxide; prostanglandin $E_{2}$; keratinocytes; human hair follicle dermal papilla cells; $5-{\alpha}$ reductase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schuler LM, Santos T, Pereira H, Duarte P, Katkam NG, Florindo C, et al. 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal. Res. 45: 101732.   DOI
2 Farahin AW, Yusoff FM, Nagao N, Basri M, Shariff M. 2016. Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor. J. Environ. Biol. 37: 631-639.
3 Jeoung YJ, Choi SY, An CS, Jeon YH, Park DK, Lim BO. 2009. Comparative effects on anti-inflammatory activity of the Phellinus linteus and Phellinus linteus grown in germinated brown rice extracts in murine macrophage RAW264.7 cells. Korean J. Med. Crop. Sci. 17: 97- 101.
4 Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 136: 85-94.   DOI
5 Prie BE, Iosif L, Tivig I, Stoian I, Giurcaneanu C. 2016. Oxidative stress in androgenetic alopecia. J. Med. Life 9: 79-83.
6 Marks-Konczalik J, Chu SC, Moss J. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites. J. Biol. Chem. 273: 22201-22208.   DOI
7 Vane JR, Mitchell JA, Appleton I. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. USA 91: 2046-2050.   DOI
8 Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox. Signal. 20: 1126-1167.   DOI
9 Farahin AW, Yusoff FM, Basri M, Nagao N, Shariff M. 2019. Use of microalgae: Tetraselmis tetrathele extract in formulation of nanoemulsions for cosmeceutical application. J. Appl. Phycol. 31: 1743-1752.   DOI
10 Liu Z, Tang L, Zou P, Zhang Y, Zhe W, Fang Q, et al. 2014. Synthesis and biological evaluation of allylated and prenylated monocarbonyl analogs of curcumin as anti-inflammatory agents. Eur. J. Med. Chem. 74: 671-682.   DOI
11 Pierce GF. 1990. Macrophages: Important physiologic and pathologic sources of polypeptide growth factors. Am. J. Respir. Cell. Mol. Biol. 2: 233-234.   DOI
12 Diani AR, Mulholland MJ, Shull KL, Kubicek MF, Johnson GA, Schistarez HJ, et al. 1992. Hair growth effects of oral administration of finasteride, a steroid 5α-reductase inhibitor, alone and in combination with topical minoxidil in the balding stumptail macaque. J. Clin. Endocrinol. Metab. 74: 345-350.   DOI
13 Randall VA. 1994. Role of 5α-reducatase in health and disease. Baillieres. Clin. Endocrinol. Metab. 8: 405-431.   DOI
14 Blanchard M, Pechenik JA, Giudicelli E, Connan JP, Robert R. 2008. Competition for food in the larvae of two marine molluscs, Crepidula fornicata and Crassostrea gigas. Aquat. Living Resour. 21: 197-205.   DOI
15 Piraccini BM, Alessandrini A. 2014. Androgenetic alopecia. G. Ital. Dermatol. Venereol. 149: 15-24.
16 Joung EJ, Lee B, Gwon WG, Shin T, Jung BM, Yoon NY, et al. 2015. Sargaquinoic acid attenuates inflammatory responses by regulating NF-kB and Nrf2 pathways in lipopolysaccharide-stimulated RAW 264.7 cells. Int. Immunopharmacol. 29: 693-700.   DOI
17 Guillard RRL, Ryther JH. 1962. Studies on marine planktonic diatoms I. Cyclotellanana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229-239.   DOI
18 Kang HW. 2012. Antioxidant and anti-inflammatory effect of extracts from Flammulina velutipes (Curtis) singer. J. Korean Soc. Food Sci. Nutr. 41: 1072-1078.   DOI
19 Chen Q, Sun T, Wang J, Jia J, Yi YH, Chen YX, et al. 2019. Hydroxytyrosol prevents dermal papilla cells inflammation under oxidative stress by inducing autophagy. J. Biochem. Mol. Toxicol. 33: e22377.   DOI
20 Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 21: 1-10.   DOI
21 Wu JH, Sun ZY. 2013. Establishment of an in vitro screening model for steroid 5 alpha-reductase inhibitors with the micro-plate reader. Zhonghua Nan. Ke. Xue. 19: 483-486.
22 Tsai HP, Chuang LT, Chen CNN. 2016. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem. 192: 682-690.   DOI
23 Kim SK, Ravichandran YD, Khan SB, Kim YT. 2008. Prospective of the cosmeceuticals derived from marine organisms. Biotechnol. Bioprocess Eng. 13: 511-523.   DOI
24 Dittmann KK, Rasmussen BB, Melchiorsen J, Sonnenschein EC, Gram L, Bentzon-Tilia M. 2020. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86: e00499-20.
25 Kaplanski G, Marin V, Montero-Jukian F, Mantovani A, Farnarier C. 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24: 25-29.   DOI
26 Arnaud MF. 2000. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol. 12: 527-534.   DOI
27 Lu L, Wang J, Yang G, Zhu B, Pan K. 2017. Heterotrophic growth and nutrient productivities of Tetraselmis chuii using glucose as a carbon source under different C/N ratios. J. Appl. Phycol. 29: 15-21.   DOI
28 Magnotti C, Lopes R, Derner R, Vinatea L. 2016. Using residual water from a marine shrimp farming BFT system. Part II: artemia franciscana biomass production fed microalgae grown in reused BFT water. Aquac. Res. 47: 2716-2722.   DOI
29 Grotkjaer T, Bentzon-Tilia M, D'Alvise P, Dierckens K, Bossier P, Gram L. 2016. Phaeobacter inhibens as probiotic bacteria in non-axenic Artemia and algae cultures. Aquaculture 462: 64-69.   DOI