• Title/Summary/Keyword: Derivatives Transactions

Search Result 76, Processing Time 0.022 seconds

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

A Design Methodology and Software Development with Sensitivity Information (민감도 정보를 이용한 설계 방법 및 소프트웨어의 개발)

  • 김용일;이정욱;윤준용;박경진
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2092-2100
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. A software system with the flow has been developed. The system can be easily interfaced with existing commercial systems through a file wrapping technique. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm and the software system.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method (전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구)

  • 강영준;강형수;채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Economic Generation Allocation with Power Equation Constraints (모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법)

  • Eom, Jae-Seon;Kim, Geon-Jung;Lee, Sang-Jung;Choe, Jang-Heum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Numerical Calculation of the Far Field Acoustic Pressure from the Unsteady Motion of the Three-dimensional Vortex Filament (삼차원 와선의 비정상 거동에 의한 원거리 음압의 수치해석)

  • Ryu, Ki-Wahn;Lee, Duck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.942-950
    • /
    • 1997
  • Far field acoustic pressure from the evolution and interaction of three-dimensional vortex filament is calculated numerically. A vortex ring is a typical example of the three-dimensional vortex filament. An elliptic vortex ring emits a strong sound signal due to significant distortion and stretching of the vortec filament. The far field acoustic pressure is linearly dependent on the third time derivatives of the vortex positions. A numerical scheme of high resolution is employed to describe in detail the elliptic vortex ring motions which ar highly nonlinear. Descretized vortex filaments are interpolated by using a parametric blending function to remove a possible numerical instability. The distorted vortex filament, owing to the self-induced and the induced velocity from the other vortex segments, is redistributed at each time step. The accuracy and efficiency of the scheme are validated by comparisons with the analytic solution of circular vortex ring interaction.

A Multi-Compartment Secret Sharing Method (다중 컴파트먼트 비밀공유 기법)

  • Cheolhoon Choi;Minsoo Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.34-40
    • /
    • 2024
  • Secret sharing is a cryptographic technique that involves dividing a secret or a piece of sensitive information into multiple shares or parts, which can significantly increase the confidentiality of a secret. There has been a lot of research on secret sharing for different contexts or situations. Tassa's conjunctive secret sharing method employs polynomial derivatives to facilitate hierarchical secret sharing. However, the use of derivatives introduces several limitations in hierarchical secret sharing. Firstly, only a single group of participants can be created at each level due to the shares being generated from a sole derivative. Secondly, the method can only reconstruct a secret through conjunction, thereby restricting the specification of arbitrary secret reconstruction conditions. Thirdly, Birkhoff interpolation is required, adding complexity compared to the more accessible Lagrange interpolation used in polynomial-based secret sharing. This paper introduces the multi-compartment secret sharing method as a generalization of the conjunctive hierarchical secret sharing. Our proposed method first encrypts a secret using external groups' shares and then generates internal shares for each group by embedding the encrypted secret value in a polynomial. While the polynomial can be reconstructed with the internal shares, the polynomial just provides the encrypted secret, requiring external shares for decryption. This approach enables the creation of multiple participant groups at a single level. It supports the implementation of arbitrary secret reconstruction conditions, as well as conjunction. Furthermore, the use of polynomials allows the application of Lagrange interpolation.

The Syntheses of Mn(III) Porphyrin Derivatives and Its Photoreactivity (Mn(III)-porphyrin 유도체의 합성과 그 광반응성)

  • Park, Yong-Tae;Noh, Sang-Gyun;Chung, Jae-Gew
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1990
  • We are interested in studying the artificial photolysis of water which mimics the natural plant photosynthesis. In the artificial system there should be a proper photosensitizer, electron donor and electron acceptor. Since Mn-tetramer is known to be the essential part for the oxygten-evolving system in the natural photosynthesis, it is important to know or study the reactivity of Mn-porphyrins. As a model for the Mn-tetramer in the natural photosynthesis, we prepared the lipophilic and hydrophilic Mn-porphyrins. For the lipophilic porphyrin with long hydrocarbon chain, the long hydrocarbon chain was inserted in the porphyrin ring formation step. For the hydrophilic porphyrin, the porphyrin was sulfonated with sulfuric acid. These syntheses of lipophilic and hydrophilic Mn-porphyrins are significant, since the behaviors of these compounds will be different in the microemulsions or vesicles. We also found that the Mn-porphyrins were photoreduced in the microemulsion and water in the presence of amines.

  • PDF

Estimation of Uncertainty in Critical Flow Function for Natural Gas (천연가스의 임계유동함수 불확도 평가)

  • Ha, Young-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.625-638
    • /
    • 2014
  • In this study, the uncertainties in the critical flow functions (CFFs) calculated by the AGA8-dc equation of state were estimated. To this end, the formulas for enthalpy, entropy, and speed of sound, which are used in calculating the CFF, were expressed in the form of dimensionless Helmholtz free energy and its derivatives, and the uncertainty in Helmholtz free energy was inferred. To consider the variations in the compressibility-dependent variables induced by the variation (i.e., uncertainty) in compressibility, the form of the AGA8-dc equation was modified to have a deviation equal to the uncertainty under each flow condition. For each independent uncertainty component of the CFF, a model for uncertainty contribution was developed. All these changes were applied to GASSOLVER, which is KOGAS's thermodynamic database. As a result, the uncertainties in the CFF were estimated to be 0.025, 0.055, and 0.112 % at 10, 50, and 100 bar, respectively, and are seen to increase with the increase in pressure. Furthermore, these results could explain the deviations in the CFFs across the different labs in which the CFF international comparison test was conducted under the ISO management in 1999.

Current- voltage (I-V) Characteristics of the Molecular Electronic Devices using Various Organic Molecules

  • Koo, Ja-Ryong;Pyo, Sang-Woo;Kim, Jun-Ho;Kim, Jung-Soo;Gong, Doo-Won;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2005
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nano scale components and Si-technology. In this study, molecular electronic devices were fabricated with amino style derivatives as redox-active component. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method and then this LB monolayer is inserted between two metal electrodes. According to the current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. The diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and Al top electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.