• 제목/요약/키워드: Depth-image

검색결과 1,846건 처리시간 0.034초

컬러와 깊이 정보를 포함하는 다시점 영상의 효율적 계층척 깊이 영상 표현 (Efficient Layered Depth Image Representation of Multi-view Image with Color and Depth Information)

  • 임중희;김민태;신종홍;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.53-59
    • /
    • 2009
  • 다시점 비디오는 데이터 양이 매우 많아서 이를 효과적으로 저장하고 전송하기 위해서는 새로운 압축 부호화의 기술 개발이 필수적이다. 계층적 깊이 영상은 다시점 비디오를 효과적으로 부호화할 수 있는 방법으로 여러 시점의 컬러와 깊이 영상을 합성하여 하나의 데이터 구조로 만든 것이다. 본 논문에서는 실제 거리비교, 오버랩 문제해결, 보간법을 이용한 효율적인 계층적 깊이 영상 표현을 통해서 다시점 영상에 대한 압축 효율을 향상시키는 방법을 제안 하였다. 실험 결과를 통해서 압축 성능 향상을 얻을 수 있었다.

  • PDF

키넥트를 이용한 다시점 영상 생성 시뮬레이션 프로그램 개발 (Development of a Multi-view Image Generation Simulation Program Using Kinect)

  • 이덕재;김민영;조용주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.818-819
    • /
    • 2014
  • 최근 안경을 쓰지 않고 3차원 입체 영상을 볼 수 있는 무안경식 3차원 디스플레이 중에서 DIBR(Depth-Image-Based Rendering) 기반의 중간 영상을 생성하는 연구가 많이 진행되고 있다. DIBR 기반의 중간 영상 생성 방법은 정확한 깊이 정보를 요구하기 때문에 기존의 연구에서는 고가의 깊이 카메라를 활용하였다. 본 연구에서는 마이크로소프트사의 키넥트 센서를 이용한 실사 영상과 깊이 영상을 기반으로 다시점 중간 영상을 생성할 수 있는 시뮬레이션 프로그램을 개발하였다. 이 시뮬레이션은 키넥트(Kinect)를 활용한 저해상도의 깊이 영상으로부터 자연스러운 다시점 영상을 획득하는 것을 목적으로 하며, 이를 위해 생성된 영상의 품질을 평가할 수 있는 기능을 통합적으로 제공한다. 본 논문에서는 이러한 시뮬레이션 프로그램의 시스템 구조와 구현에 대해서 설명한다.

  • PDF

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • ;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

단일 카메라를 이용한 3D 깊이 추정 방법 (3D Depth Estimation by a Single Camera)

  • 김승기;고영민;배철균;김대진
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.281-291
    • /
    • 2019
  • 3D 카메라 기술 중에서 초점의 흐려짐을 이용한 깊이 추정은 카메라의 초점거리 평면의 물체는 선명한 상이 맺히지만 카메라의 초점거리 평면으로부터 멀어진 물체는 흐린 영상을 만들어낸다는 현상을 이용해 3D 깊이를 추정한다. 본 논문에서는 단일 카메라를 이용하여 촬영한 영상의 흐림 정도를 분석하여 3D 깊이를 추정하는 알고리즘을 연구하였다. 단일 카메라의 1 개의 영상 또는 단일 카메라의 초점이 서로 다른 2 개의 영상을 사용하여 초점의 흐려짐을 이용한 3D 깊이를 추정하는 방법을 통해 최적화된 피사체 범위를 도출하였다. 1 개의 영상을 이용한 깊이 추정에서는 스마트폰 카메라와 DSLR 카메라 모두 250 mm의 초점거리를 사용하는 것이 가장 좋은 성능을 보였다. 2개의 영상을 이용한 깊이 추정에서는 스마트폰 카메라 영상은 150 mm와 250 mm로 그리고 DSLR 카메라 영상은 200 mm와 300 mm로 초점거리를 설정하였을 때 가장 좋은 3D 깊이 추정 유효 범위를 갖는 것으로 나타났다.

계층적 결합형 양방향 필터를 이용한 실시간 깊이 영상 보정 방법 (Real-time Depth Image Refinement using Hierarchical Joint Bilateral Filter)

  • 신동원;호요성
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.140-147
    • /
    • 2014
  • 본 논문에서는 결합형 양방향 필터를 이용하여 깊이 영상을 실시간으로 보정하는 방법을 제안한다. 제안한 방법은 Kinect 깊이 카메라로부터 얻은 깊이 영상의 화질을 실시간으로 향상시키기 위해 GPU 내의 상수 메모리와 2차원 영상 처리에 적합한 텍스쳐 메모리를 사용한다. 또한, 단일 화소에 대한 결합형 양방향 필터 연산을 각 GPU 쓰레드(thread)에 할당한 다음 병렬로 처리하여 계산량을 현저히 감소시킨다. 그리고 깊이 영상의 품질을 더욱 높이기 위해 CUDA를 이용해 구현한 결합형 양방향 필터를 계층형 구조로 반복적으로 수행하여 폐색 영역이 채워진 깊이 영상을 얻을 수 있다. 실험 결과를 통해, 제안한 실시간 깊이 영상 보정 방법이 깊이 영상의 주관적 화질을 향상시키고, 초당 55 화면의 속도로 동작하는 것을 확인했다.

관심맵과 에지 모델링을 이용한 2D 영상의 3D 변환 (Generation of Stereoscopic Image from 2D Image based on Saliency and Edge Modeling)

  • 김만배
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.368-378
    • /
    • 2015
  • 2D영상의 3D변환 기술은 3D 디스플레이 및 3DTV에 기본적으로 장착된 기술로 꾸준히 연구 및 상업화가 진행된 기술이다. 이 기술은 3D 입체영상 콘텐츠 부족을 해결할 수 있다는 장점이 있다. 3D변환은 정지영상으로부터 다양한 깊이단서를 이용하여 깊이맵을 추출한 후에, DIBR(Depth Image Based Rendering)로 입체영상을 생성한다. 특정 영상이외에는 영상에서 신뢰성 있는 단서가 있는 경우는 많지 않다. 따라서 3D변환 기술은 일반 영상에서도 우수하고, 일관된 입체영상이 생성하는 것이 중요하다. 이러한 관점에서 본논문에서는 상기 조건을 만족할 수 있는 3D변환 방법을 제안한다. 주 기술로 최근 다양한 분야에서 활용되는 관심맵과 에지를 활용한 다. 깊이맵을 생성하기 위해서 기하적 투영, 근접 모델 및 바이노믹 필터를 활용한다. 실험에서는 제안한 방법을 24개의 2D 비디오 콘텐츠에 적용하였고, 입체감 및 시각적 피로도 등의 주관적 평가를 통해 3D 콘텐츠의 우수한 만족도를 확인하였다.

깊이 정보를 이용한 원근 왜곡 영상의 보정 (Correction of Perspective Distortion Image Using Depth Information)

  • 권순각;이동석
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.106-112
    • /
    • 2015
  • In this paper, we propose a method for correction of perspective distortion on a taken image. An image taken by a camera is caused perspective distortion depending on the direction of the camera when objects are projected onto the image. The proposed method in this paper is to obtain the normal vector of the plane through the depth information using a depth camera and calculate the direction of the camera based on this normal vector. Then the method corrects the perspective distortion to the view taken from the front side by performing a rotation transformation on the image according to the direction of the camera. Through the proposed method, it is possible to increase the processing speed than the conventional method such as correction of perspective distortion based on color information.

Digital Watermarking Algorithm for Multiview Images Generated by Three-Dimensional Warping

  • Park, Scott;Kim, Bora;Kim, Dong-Wook;Seo, Youngho
    • Journal of information and communication convergence engineering
    • /
    • 제13권1호
    • /
    • pp.62-68
    • /
    • 2015
  • In this paper, we propose a watermarking method for protecting the ownership of three-dimensional (3D) content generated from depth and texture images. After selecting the target areas to preserve the watermark by depth-image-based rendering, the reference viewpoint image is moved right and left in the depth map until the maximum viewpoint change is obtained and the overlapped region is generated for marking space. The region is divided into four subparts and scanned. After applying discrete cosine transform, the watermarks are inserted. To extract the watermark, the viewpoint can be changed by referring to the viewpoint image and the corresponding depth image initially, before returning to the original viewpoint. The watermark embedding and extracting algorithm are based on quantization. The watermarked image is attacked by the methods of JPEG compression, blurring, sharpening, and salt-pepper noise.

입체영상에서 자극의 색상, 배경색, 제시거리가 인간의 심도지각에 미치는 영향에 관한 연구

  • 박경수;이안재
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1995년도 춘계학술대회논문집
    • /
    • pp.181-186
    • /
    • 1995
  • This study investigated the effects of several factors - stimulus color, background color, and predicted depth - that affect depth perception in stereoscopic displays. For this study, two experiments were conducted; in the first experiment, the subjects were asked to indicate the depth perceived from presented image(rectangle) using matching mark, and in the second experiment, the subjects were asked to adjust one image(controllable rectangle) to have the same perceived depth as the other image(fixed rectangle) using keyboard. The depth perceived under various combination of levels of these factors was compared with depth predicted by the geometry of streopsis. Through two experiments, we found that stimulus color, predicted depth, and interaction between stimulus color and background color affected perceived depth significantly, and that red was perceived to be closest to the observer followed by yellow, green, and then blue.

Distance Measurement Using the Kinect Sensor with Neuro-image Processing

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.379-383
    • /
    • 2015
  • This paper presents an approach to detect object distance with the use of the recently developed low-cost Kinect sensor. The technique is based on Kinect color depth-image processing and can be used to design various computer-vision applications, such as object recognition, video surveillance, and autonomous path finding. The proposed technique uses keypoint feature detection in the Kinect depth image and advantages of depth pixels to directly obtain the feature distance in the depth images. This highly reduces the computational overhead and obtains the pixel distance in the Kinect captured images.